Second-generation antipsychotics cause a rapid switch to fat oxidation that is required for survival in C57BL/6J mice.

Schizophr Bull

*To whom correspondence should be addressed; Department of Cellular & Molecular Physiology, Penn State College of Medicine, 500 University Drive, MC-H166, Hershey, PA 17033, US; tel: 717-531-5170, fax: 717-531-7667, e-mail:

Published: March 2014

Some second-generation antipsychotics (SGAs) increase insulin resistance and fat oxidation, but counter intuitively they do not activate lipolysis. This seems unsustainable for meeting energy demands. Here, we measured dose-dependent effects of SGAs on rates of oxygen consumption (VO2), respiratory exchange ratio (RER), and physical activity in C57BL/6J mice. The role of H1-histamine receptors and consequences of blocking fat oxidation were also examined. Olanzapine, risperidone, and clozapine (2.5-10mg/kg) elicited rapid drops in dark-cycle RER (~0.7) within minutes, whereas aripiprazole exerted only modest changes. Higher doses of olanzapine decreased VO2, and this was associated with accumulation of glucose in plasma. Clozapine and risperidone also lowered VO2, in contrast to aripiprazole, whereas all decreased physical activity. Astemizole and terfenadine had no significant effects on RER, VO2, or physical activity. The VO2 and RER effects appear independent of sedation/physical activity or H1-receptors. CPT-1 inhibitors can enhance muscle glucose utilization and prevent fat oxidation. However, after etomoxir (2 × 30 mg/kg), a low dose of olanzapine that did not significantly affect VO2 by itself caused precipitous drops in VO2 and body temperature, leading to death within hours or a moribund state requiring euthanasia. One 30 mg/kg dose of either etomoxir or 2-tetradecylglycidate followed by olanzapine, risperidone, or clozapine, but not aripiprazole, dramatically lowered VO2 and body temperature. Thus, mice treated with some SGAs shift their fuel utilization to mostly fat but are unable to either switch back to glucose or meet their energy demands when either higher doses are used or when fat oxidation is blocked.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932077PMC
http://dx.doi.org/10.1093/schbul/sbs196DOI Listing

Publication Analysis

Top Keywords

fat oxidation
20
physical activity
12
second-generation antipsychotics
8
c57bl/6j mice
8
energy demands
8
vo2
8
olanzapine risperidone
8
risperidone clozapine
8
higher doses
8
lowered vo2
8

Similar Publications

Aims: Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM.

Main Methods: 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI).

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

Enhancing fat graft survival: thymosin beta-4 facilitates mitochondrial transfer from ADSCs via tunneling nanotubes by upregulating the Rac/F-actin pathway.

Free Radic Biol Med

January 2025

Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing 100144, People's Republic of China. Electronic address:

Autologous fat grafting is a widely used technique in plastic and reconstructive surgery, but its efficacy is often limited by the poor survival rate of transplanted adipose tissue. This study aims to enhance the survival of fat grafts by investigating the role of thymosin beta-4 (Tβ4) in facilitating mitochondrial transfer from adipose-derived stem cells (ADSCs) to adipocytes and newly formed blood vessels within the grafts via tunneling nanotubes (TNTs). We demonstrate that Tβ4 upregulates the Rac/F-actin pathway, leading to an increased formation of TNTs and subsequent transfer of mitochondria from ADSCs.

View Article and Find Full Text PDF

High-Resolution Free-Breathing Chemical-Shift-Encoded MRI for Characterizing Lymph Nodes in the Upper Abdomen.

Invest Radiol

January 2025

From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).

Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is an energy-consuming organ, and its functional dysregulation contributes to the development of metabolic diseases and obesity. BAT function is regulated by the sympathetic nervous system but declines with age, which is partly caused by reduced sympathetic nerve fibers innervating BAT. Thus far, the role of mesenchymal stromal/stem cells in age-related BAT dysfunction remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!