A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial function in diabetes: novel methodology and new insight. | LitMetric

Mitochondrial function in diabetes: novel methodology and new insight.

Diabetes

NMR Core Facility and Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA.

Published: June 2013

Interpreting mitochondrial function as affected by comparative physiologic conditions is confounding because individual functional parameters are interdependent. Here, we studied muscle mitochondrial function in insulin-deficient diabetes using a novel, highly sensitive, and specific method to quantify ATP production simultaneously with reactive oxygen species (ROS) at clamped levels of inner mitochondrial membrane potential (ΔΨ), enabling more detailed study. We used a 2-deoxyglucose (2DOG) energy clamp to set ΔΨ at fixed levels and to quantify ATP production as 2DOG conversion to 2DOG-phosphate measured by one-dimensional (1)H and two-dimensional (1)H/(13)C heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy. These techniques proved far more sensitive than conventional (31)P nuclear magnetic resonance and allowed high-throughput study of small mitochondrial isolates. Over conditions ranging from state 4 to state 3 respiration, ATP production was lower and ROS per unit of ATP generated was greater in mitochondria isolated from diabetic muscle. Moreover, ROS began to increase at a lower threshold for inner membrane potential in diabetic mitochondria. Further, ATP production in diabetic mitochondria is limited not only by respiration but also by limited capacity to use ΔΨ for ATP synthesis. In summary, we describe novel methodology for measuring ATP and provide new mechanistic insight into the dysregulation of ATP production and ROS in mitochondria of insulin-deficient rodents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661643PMC
http://dx.doi.org/10.2337/db12-1152DOI Listing

Publication Analysis

Top Keywords

atp production
20
mitochondrial function
12
diabetes novel
8
novel methodology
8
atp
8
quantify atp
8
membrane potential
8
nuclear magnetic
8
magnetic resonance
8
diabetic mitochondria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!