[Effects on the antibacterial activity of TiO(2) nanotubes with different diameters from ultraviolet ray-irradiation].

Zhonghua Kou Qiang Yi Xue Za Zhi

Department of Prosthodontics, College of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.

Published: December 2012

Objective: To study the effects of ultraviolet ray (UV)-irradiation on the surface characteristic and antibacterial activity of TiO(2) nanotubes with different diameters.

Methods: TiO(2) nanotubes with different diameters were fabricated on polished pure titanium (PT) samples by anodization at 5, 10 and 20 V with PT as control. The samples were exposed to UV-irradiation for 24 h, then the characteristic and antibacterial activity were analyzed and evaluated. The surface topograph was observed by field emission scanning electron microscope (FE-SEM). Contract angle measurements were carried out with three liquids. Staphylococcus aureus (Sa) were used to evaluate the antibacterial activity of samples with the film contact method. The bacterial morphology was observed by FE-SEM. The bacterial adhesion and cell membrane injury were evaluated by fluorescent staining analysis under laser scanning confocal microscope (LSCM).

Results: After the TiO(2) nanotubes with different diameters were exposed to UV-irradiation, no change was observed in its surface topograph. With the increase of the diameters of nanotubes, each contract angle of nanotubes decreased, and bacterial FIt and dead/live ratio were also increased. We found 20 V FIt was the biggest (26.550 ± 2.940) and ranks the highest ratio of death/live (0.728 ± 0.091) among the others (P < 0.05).

Conclusions: The UV-irradiation can decrease the contract angle of TiO(2) nanotubes and promote the Sa adhesion on nanotubes. Meanwhile, the antibacterial activity of TiO(2) nanotubes with different diameters was remarkably enhanced by UV-irradiation. Nanotubes anodized at 20 V showed the best antibacterial activity.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.1002-0098.2012.12.013DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
24
tio2 nanotubes
24
nanotubes diameters
16
activity tio2
12
contract angle
12
nanotubes
10
characteristic antibacterial
8
exposed uv-irradiation
8
surface topograph
8
activity
6

Similar Publications

Antimicrobial and Cytotoxic Potential of Endophytic Aspergillus versicolor Isolate from the Medicinal Plant Plectranthus amboinicus.

Curr Microbiol

January 2025

Department of Microbiology and Botany, School of Sciences, J. C. Road, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India.

Endophytic fungi are non-pathogenic organisms that colonise healthy plant tissues asymptomatically. Endophytes derived from medicinal plants are sources for identifying natural products and bioactive compounds with potential uses for industry, medicine, agriculture, and related sectors. In the present study, ethyl acetate crude extracts of four endophytic fungal isolates (CALF1, CALF4, and CASF1) from the medicinal plant Plectranthus amboinicus showed potent antimicrobial activity against the test pathogenic bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using disc diffusion assays.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Modular Engineering of Lysostaphin with Significantly Improved Stability and Bioavailability for Treating MRSA Infections.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!