The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599293PMC
http://dx.doi.org/10.1021/ac303428hDOI Listing

Publication Analysis

Top Keywords

isoasp
9
isoaspartyl-containing proteins
8
proteins urine
8
wild type
8
protein l-isoaspartate
8
protein pharmaceuticals
8
excretion pathways
8
urinary proteins
8
sites mups
8
proteins
7

Similar Publications

Collapsin response mediator protein 2 (CRMP2) functions in the genesis and activity of neuronal connections in mammalian brain. We previously reported that a protein coincident with CRMP2 on 2D-gels undergoes marked accumulation of abnormal L-isoaspartyl sites in brain extracts of mice missing the repair enzyme, protein L-isoaspartyl methyltransferase (PIMT). To confirm and explore the significance of isoaspartyl damage in CRMP2, we expressed and purified recombinant mouse CRMP2 (rCRMP2).

View Article and Find Full Text PDF

Rapid identification of asparagine (Asn) deamidation and isoaspartate (Asp) in proteins remains a challenging analytical task during the development of biological therapeutics. For this study, 46 therapeutically relevant peptides corresponding to 13 peptide families (13 unmodified peptides and 33 modified peptides) were obtained; modified peptides included Asn deamidation and isoAsp. The peptide families were characterized by three methods: reversed-phase ultrahigh performance liquid chromatography-mass spectrometry (RP-UHPLC-MS); flow injection analysis high-resolution ion mobility-mass spectrometry (FIA-HRIM-MS); and shortened gradient RP-UHPLC-HRIM-MS.

View Article and Find Full Text PDF

Collapsin response mediator protein 2 (CRMP2) functions in the genesis and activity of neuronal connections in mammalian brain. We previously reported that a protein coincident with CRMP2 on 2D-gels undergoes marked accumulation of abnormal L-isoaspartyl sites in brain extracts of mice missing the repair enzyme, protein L-isoaspartyl methyltransferase (PIMT). To conflrm and explore the signiflcance of isoaspartyl damage in CRMP2, we expressed and purifled recombinant mouse CRMP2 (rCRMP2).

View Article and Find Full Text PDF

Chromatographic properties of deamidated peptides with Asn-Gly sequences in proteomic bottom-up experiments.

J Chromatogr A

December 2024

Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada; Department of Internal Medicine, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada. Electronic address:

Studies surrounding deamidation have relied on the chromatographic and mass spectrometric differentiation of Asn containing peptides and their isomeric Asp and isoAsp products. The development of mass spectrometry analytical techniques and characterization of isomer specific fragmentation patterns has permitted the investigation of some deamidation species but has struggled to remain effective when applied and on complex samples or in high throughput scenarios. On the other hand, chromatographic separations can provide additional information to facilitate detection of deamidation.

View Article and Find Full Text PDF

isoAsp-Quest: workflow development for isoAsp identification using database searches.

J Biochem

January 2025

Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the mass spectrometry (MS)-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyse Asp isomers using MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!