Concentration of light and infrared capture are two favored approaches for increasing the power conversion efficiency (PCE) of photovoltaic devices. Using optical transfer matrix formalism, we model the absorption of organic photovoltaic films as a function of active layer thickness and incident wavelength. In our simulations we consider the absorption in the optical cavity formed by the polymer bulk heterojunction active layer (AL) between the aluminum cathode and indium tin oxide (ITO) anode. We find that optical absorption can be finely tuned by adjusting the ITO thickness within a relatively narrow range, thus eliminating the need for a separate optical spacer. We also observe distinct spectral effects due to frequency pulling which results in enhanced long-wavelength absorption. Spectral sculpting can be carried out by cavity design without affecting the open circuit voltage as the spectral shifts are purely optical effects. We have experimentally verified aspects of our modeling and suggest methods to improve device design.

Download full-text PDF

Source

Publication Analysis

Top Keywords

absorption organic
8
organic photovoltaic
8
photovoltaic films
8
active layer
8
absorption
5
optical
5
spectral
4
spectral aspects
4
aspects cavity
4
cavity tuned
4

Similar Publications

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!