The purpose of this work was to construct a consensus prediction algorithm of 'aggregation-prone' peptides in globular proteins, combining existing tools. This allows comparison of the different algorithms and the production of more objective and accurate results. Eleven (11) individual methods are combined and produce AMYLPRED2, a publicly, freely available web tool to academic users (http://biophysics.biol.uoa.gr/AMYLPRED2), for the consensus prediction of amyloidogenic determinants/'aggregation-prone' peptides in proteins, from sequence alone. The performance of AMYLPRED2 indicates that it functions better than individual aggregation-prediction algorithms, as perhaps expected. AMYLPRED2 is a useful tool for identifying amyloid-forming regions in proteins that are associated with several conformational diseases, called amyloidoses, such as Altzheimer's, Parkinson's, prion diseases and type II diabetes. It may also be useful for understanding the properties of protein folding and misfolding and for helping to the control of protein aggregation/solubility in biotechnology (recombinant proteins forming bacterial inclusion bodies) and biotherapeutics (monoclonal antibodies and biopharmaceutical proteins).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542318 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054175 | PLOS |
Nat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2025
Department of Chemistry, York College of the City University of New York, Jamaica, New York 11451, USA; PhD Programs in Chemistry and Biochemistry, Graduate Center of the City University of New York, New York 10016, USA. Electronic address:
Atherosclerosis, the major underlying cause of cardiovascular disease, is believed to arise from the accumulation of low-density lipoprotein (LDL) in the arterial subendothelial space, ultimately leading to plaque formation. It is proposed that the accumulation of LDL is linked to its intrinsic aggregation propensity. Although the native LDL is not prone to aggregation, LDL(-), an electronegative LDL characterized in the plasma, has been shown to prime LDL aggregation in a domino-like behavior similar to amyloidogenic proteins.
View Article and Find Full Text PDFActa Biomater
January 2025
Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:
J Phys Chem B
December 2024
Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
The association of 55 dipeptides extracted from aggregation-prone regions of selected proteins was studied by means of multiplexed replica-exchange molecular dynamics simulations with the coarse-grained UNRES model of polypeptide chains. Each simulation was carried out with 320 dipeptide molecules in a periodic box at 0.24 mol/dm concentration, in the 260-370 K temperature range.
View Article and Find Full Text PDFLife Sci Alliance
February 2025
Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
The co-chaperone BAG3 plays critical roles in maintaining cellular proteostasis. It associates with 14-3-3 proteins during the trafficking of aggregation-prone proteins and facilitates their degradation through chaperone-assisted selective autophagy in cooperation with small heat shock proteins. Although reversible phosphorylation regulates BAG3 function, the involved phosphatases remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!