Carrion is an ephemeral and spatially patchy resource that supports a diverse subset of species linked to nutrient cycling and the decomposition process. A number of studies have separately documented changes in the diversity of plants, arthropods and vertebrates at individual carcasses, but there are few studies that have examined how functional traits of different groups of organisms underpin their responses to carrion patches. We used a carrion addition experiment to compare changes in composition and functional traits of insect and plant assemblages at carcasses compared with control sites. We found that significant changes in insect assemblage evenness and heterogeneity was associated with species' dispersal traits, and that plant assemblage responses to subsequent soil nitrogen changes was most apparent among graminoids and exotic species. Beetles at carcasses were twice as large as their counterparts at control sites during the first week of carrion decomposition, and also had higher wing loadings. Plants with high specific leaf area responded faster to the carcass addition, and twice as many species recolonised the centre of carcasses in exotic-dominated grassland compared with carcasses in native-dominated grassland. These results provide an example of how traits of opportunist species enable them to exploit patchy and dynamic resources. This increases our understanding of how carcasses can drive biodiversity dynamics, and has implications for the way carrion might be managed in ecosystems, such as appropriate consideration of spatial and temporal continuity in carrion resources to promote heterogeneity in nutrient cycling and species diversity within landscapes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543354PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053961PLOS

Publication Analysis

Top Keywords

nutrient cycling
8
functional traits
8
control sites
8
carrion
7
species
6
carcasses
6
species traits
4
traits predict
4
predict assemblage
4
assemblage dynamics
4

Similar Publications

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.

View Article and Find Full Text PDF

The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.

View Article and Find Full Text PDF

Foliar Spraying of Nanoselenium Improves the Nutritional Quality of Alfalfa by Recruiting Beneficial Phyllosphere Bacteria and Regulating the Distribution and Translocation of Selenium.

J Agric Food Chem

January 2025

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010010, China.

Nanoselenium shows potential trends in improving plant health and food quality. In this study, different concentrations of nanoselenium were sprayed on the leaves of alfalfa. Compared to the control, nanoselenium (100 mg·L) significantly increased SeMet and SeMeCys contents in the roots, stems, and leaves of alfalfa.

View Article and Find Full Text PDF

Inorganic substrates in frozen solutions: Transformation mechanisms and interactions with organic compounds - A review.

Water Res

December 2024

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China. Electronic address:

In cold environments, such as polar regions and high latitudes, the freezing of aqueous solutions plays a crucial role in releasing and transforming nutrients, organic compounds, and trace gases. Freezing processes typically affect biogeochemical cycles and environmental processes by reducing the rate of chemical reactions. However, substantial studies have found that some chemical reactions may accelerate unexpectedly under freezing conditions.

View Article and Find Full Text PDF

IL-7 promotes integrated glucose and amino acid sensing during homeostatic CD4 T cell proliferation.

Cell Rep

January 2025

School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. Electronic address:

Interleukin (IL)-7 promotes T cell expansion during lymphopenia. We studied the metabolic basis in CD4 T cells, observing increased glucose usage for nucleotide synthesis and oxidation in the tricarboxylic acid (TCA) cycle. Unlike other TCA metabolites, glucose-derived citrate does not accumulate upon IL-7 exposure, indicating diversion into other processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!