Candida antarctica lipase B (CALB) is one of the most widely used and studied enzymes in the world. In order to achieve the high-level expression of CALB in Pichia, we optimized the codons of CALB gene and α-factor by using a de novo design and synthesis strategy. Through comparative analysis of a series of recombinants with different expression components, we found that the methanol-inducible expression recombinant carrying the codon-optimized α-factor and mature CALB gene (pPIC9KαM-CalBM) has the highest lipase production capacity. After fermentation parameters optimization, the lipase activity and protein content of the recombinant pPIC9KαM-CalBM reached 6,100 U/mL and 3.0 g/L, respectively, in a 5-L fermentor. We believe this strategy could be of special interest due to its capacity to improve the expression level of target gene, and the Pichia transformants carrying the codon-optimized gene had great potential for the industrial-scale production of CALB lipase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542265PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053939PLOS

Publication Analysis

Top Keywords

novo design
8
design synthesis
8
candida antarctica
8
antarctica lipase
8
gene α-factor
8
high-level expression
8
calb gene
8
carrying codon-optimized
8
lipase
5
gene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!