The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (V(T)) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-V(T) combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH(2)O with conventional ventilation (CV), CV with intermittent large breaths (CV(LB)) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VV(N)). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CV(LB) was better than CV, VV(N) outperformed CV(LB) in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541132 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053934 | PLOS |
Plants (Basel)
January 2025
College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China.
The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agrarian and Exact, Universidade Estadual da Paraíba, Catolé do Rocha 58884-000, PB, Brazil.
Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy.
Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source-sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source-sink, the dynamic changes in related enzyme activities, the effects of the source-sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!