Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543331 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053618 | PLOS |
Biotechnol Adv
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China. Electronic address:
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam.
Background: , a green microalga, is a rich source of natural astaxanthin and a potent antioxidant with high commercial value. This study investigates the biological characteristics and potential of HB isolated from Hoa Binh, Vietnam, for growth and astaxanthin accumulation using a two-phase culture method.
Methods: HB was cultured in a C/RM medium at 25 °C, and morphological characteristics were examined.
Int J Biol Macromol
December 2024
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function.
View Article and Find Full Text PDFMetabolites
December 2024
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
(HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!