The congenital muscular dystrophies (CMDs) comprise a heterogeneous group of heritable muscle disorders with often difficult to interpret muscle pathology, making them challenging to diagnose. Serial Sanger sequencing of suspected CMD genes, while the current molecular diagnostic method of choice, can be slow and expensive. A comprehensive panel test for simultaneous screening of mutations in all known CMD-associated genes would be a more effective diagnostic strategy. Thus, the CMDs are a model disorder group for development and validation of next-generation sequencing (NGS) strategies for diagnostic and clinical care applications. Using a highly multiplexed PCR-based target enrichment method (RainDance) in conjunction with NGS, we performed mutation detection in all CMD genes of 26 samples and compared the results with Sanger sequencing. The RainDance NGS panel showed great consistency in coverage depth, on-target efficiency, versatility of mutation detection, and genotype concordance with Sanger sequencing, demonstrating the test's appropriateness for clinical use. Compared to single tests, a higher diagnostic yield was observed by panel implementation. The panel's limitation is the amplification failure of select gene-specific exons which require Sanger sequencing for test completion. Successful validation and application of the CMD NGS panel to improve the diagnostic yield in a clinical laboratory was shown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543442PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053083PLOS

Publication Analysis

Top Keywords

sanger sequencing
16
congenital muscular
8
next-generation sequencing
8
cmd genes
8
mutation detection
8
ngs panel
8
diagnostic yield
8
sequencing
6
panel
5
diagnostic
5

Similar Publications

Ticks are temporary ectoparasites that serve as vectors for a wide range of pathogens affecting both wildlife and humans. In Greece, research on the prevalence of tick-borne pathogens in wildlife is limited. This study investigates the presence of pathogens, including spp.

View Article and Find Full Text PDF

: The nuclear factor (NF)-kB essential modulator (NEMO) has a crucial role in the NFκB pathway. Hypomorphic pathogenic variants cause ectodermal dysplasia with immunodeficiency (EDA-ID) in affected males. However, heterozygous amorphic variants could be responsible for Incontinentia Pigmenti (IP) in female carriers.

View Article and Find Full Text PDF

Somatic DNA Variants in Epilepsy Surgery Brain Samples from Patients with Lesional Epilepsy.

Int J Mol Sci

January 2025

Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.

Epilepsy affects 50 million people worldwide and is drug-resistant in approximately one-third of cases. Even when a structural lesion is identified as the epileptogenic focus, understanding the underlying genetic causes is crucial to guide both counseling and treatment decisions. Both somatic and germline DNA variants may contribute to the lesion itself and/or influence the severity of symptoms.

View Article and Find Full Text PDF

(1) Background: The phenotypes of classic lattice corneal dystrophy (LCD) and granular corneal dystrophy type 2 (GCD2) that result from abnormalities in gene () have previously been described. The phenotype of compound heterozygous classic LCD and GCD2, however, has not yet been reported. (2) Case report: A 39-year-old male (proband) presented to our clinic complaining of decreased vision bilaterally.

View Article and Find Full Text PDF

Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!