Background: Ongoing characterization of glioma has revealed that Akt signaling plays a crucial role in gliomagenesis. In mouse models, however, Akt alone was not sufficient to induce glioma.

Methods: We established transgenic zebrafish that overexpressed dominant-active (DA) human Akt1 or Rac1(G12V) (DARac1) at ptf1a domain and investigated transgenic phenotypes and mechanisms leading to gliomagenesis.

Results: Transgene expressions were spatiotemporally restricted without any developmental abnormality of embryos and persisted at cerebellum and medulla in adult zebrafish. DAAkt1 alone induced glioma (with visible bumps at the head), with incidences of 36.6% and 49% at 6 and 9 months, respectively. Histologically, gliomas showed various histologic grades, increased proliferation, and frequent invasion into the fourth ventricle. Preferential location of small tumors at periventricular area and coexpression of Her4 suggested that tumors originated from Ptf1a- and Her4-positive progenitor cells at ventricular zone. Gliomagenesis was principally mediated by activation of survival pathway through upregulation of survivin genes. Although DARac1 alone was incapable of gliomagenesis, when coexpressed with DAAkt1, gliomagenesis was accelerated, showing higher tumor incidences (62.0% and 73.3% at 6 and 9 months, respectively), advanced histologic grade, invasiveness, and shortened survival. DARac1 upregulated survivin2, cyclin D1, β-catenin, and snail1a but downregulated E-cadherin, indicating that DARac1 promotes gliomagenesis by enhancing proliferation, survival, and epithelial-to-mesenchymal transition. On pharmacologic tests, only Akt1/2 inhibitor effectively suppressed gliomagenesis, inhibited cellular proliferation, and induced apoptosis in established gliomas.

Conclusions: The zebrafish model reinforces the pivotal role of Akt signaling in gliomagenesis and suggests Rac1 as an important protein involved in progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578497PMC
http://dx.doi.org/10.1093/neuonc/nos387DOI Listing

Publication Analysis

Top Keywords

transgenic zebrafish
8
akt signaling
8
gliomagenesis
7
glioma formed
4
formed active
4
active akt1
4
akt1 promoted
4
promoted active
4
active rac1
4
rac1 transgenic
4

Similar Publications

Development of sensorimotor responses in larval zebrafish: a comparison between wild-type and GCaMP6s transgenic line.

Behav Brain Res

December 2024

CERVO Brain Research Centre, 2301 Av. D'Estimauville, Québec City, QC, Canada, G1E 1T2; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec City, QC, Canada. Electronic address:

During early development, zebrafish larvae exhibit stereotypical behaviors, which rapidly become more complex. Thus, generating mutant transgenic lines that maintain transparency throughout their larval stage and that can be used to record brain activity has offered strategic opportunities to investigate the underlying neural correlates of behavior establishment. However, few studies have documented the sensorimotor profile of these lines during larval development.

View Article and Find Full Text PDF

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects.

Ultrason Sonochem

December 2024

College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China. Electronic address:

Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity.

View Article and Find Full Text PDF

Live Visualization of Calcified Bones in Zebrafish and Medaka Larvae and Juveniles Using Calcein and Alizarin Red S.

Bio Protoc

December 2024

Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.

Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.

View Article and Find Full Text PDF

SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) of is a valuable broad-spectrum antigen against various pathogens in aquaculture (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!