Diclofenac (DCF) is a widely used nonsteroidal anti-inflammatory drug that is regularly detected in surface waters. To support a robust aquatic risk assessment, two early life stage (ELS) tests, compliant with the Organisation for Economic Co-operation and Development (OECD) test guideline 210, were conducted in rainbow trout and in zebrafish. Population relevant endpoints, such as hatching, growth, and survival, and in the trout study, histopathological effects in potential target organs, were examined. The bioconcentration of DCF in rainbow trout was measured in a separate study according to OECD test guideline 305. The bioconcentration factor (BCF) in rainbow trout remained below 10, demonstrating no relevant bioconcentration of DCF in fish. In the rainbow trout ELS test, the no observed effect concentration (NOEC) including histopathology was 320 µg/L. The effect of DCF on zebrafish growth was less clear, and the NOEC can be interpreted as 10 µg/L. However, for a number of reasons, the authors consider the moderately reduced growth of zebrafish exposed to concentrations of up to 320 µg/L not a repeatable, treatment-related effect of DCF. This leads us to a conclusion that DCF has, with high probability, no adverse effect on both fish species up to 320 µg/L. This NOEC indicates a sufficient safety margin for fish populations, because concentrations of DCF in European rivers are in the range of ng/L to low µg/L.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674524PMC
http://dx.doi.org/10.1002/etc.2085DOI Listing

Publication Analysis

Top Keywords

rainbow trout
16
oecd test
8
test guideline
8
bioconcentration dcf
8
dcf
7
trout
5
diclofenac data
4
data chronic
4
chronic toxicity
4
bioconcentration
4

Similar Publications

6PPD-quinone (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone), a transformation product of the antiozonant 6PPD (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine) is a likely causative agent of coho salmon (Oncorhynchus kisutch) pre-spawn mortality. Stormwater runoff transports 6PPD-quinone into freshwater streams, rapidly leading to neurobehavioral, respiratory distress, and rapid mortality in laboratory exposed coho salmon, but causing no mortality in many laboratory-tested species. Given this identified hazard, and potential for environmental exposure, we evaluated a set of U.

View Article and Find Full Text PDF

In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.

View Article and Find Full Text PDF

is an opportunistic pathogen that can infect humans, animals and aquatic species, which is widely distributed in different aquatic environments and products. In recent years, with the rapid expansion of intensive aquaculture, the disease caused by has occurred. This study aims to understand the pathogenic characteristics of and provide scientific basis for the prevention and control of the epidemic.

View Article and Find Full Text PDF

Oral immunization with attenuated Salmonella Typhimurium as a carrier of DNA vaccine against infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss).

Fish Shellfish Immunol

January 2025

Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen in the salmonid aquaculture industry and leads to economic losses in the world. This study aimed to develop a new oral DNA vaccine designed to protect rainbow trout against infection by IHNV. Fish were administered via the oral route by the attenuated Salmonella enterica serovar Typhimurium as a carrier of pcDNA3.

View Article and Find Full Text PDF

Single-cycle viruses hold great promise as fish viral vaccines due to their high protective efficacy. Although the efficacy of the vaccine in olive flounder and rainbow trout has been proven through previous research, safety must be additionally proven considering the environment of use for commercialization. This study comprehensively assesses the safety of rVHSV-GΔTM and its impact on both the host and the surrounding environment, including the coastal habitat of nearby species and seawater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!