We studied the retinal rod pathway of Carollia perspicillata and Glossophaga soricina, frugivorous microbats of the phyllostomid family. Protein kinase Cα (PKCα) immunolabeling revealed abundant rod bipolar cells (RBCs) with axon terminals in the innermost sublamina of the inner plexiform layer (IPL), which is typical for mammals. Extraordinarily, the RBC axons showed additional synaptic contacts in a second sublamina further out in the IPL. Dye injections of PKCα-prelabeled RBCs of C. perspicillata confirmed the bistratified axon morphology. The functional partition of the IPL into ON and OFF sublayers was shown by using antibodies against vesicular glutamate transporter 1 [labeling all ON and OFF bipolar cell (BC) axon terminals] and G-protein γ13 (labeling all ON BCs). The ON sublayer occupied 75% of the IPL thickness, including both strata of the RBC axons. RBC output onto putative AII amacrine cells (ACs), the crucial interneurons of the rod pathway, was identified by calretinin, PKCα, and CtBP2 triple immunolabeling. Dye injections of calretinin-prelabeled ACs revealed tristratification of the AII ACs corresponding to the bistratified RBCs. Triple immunolabeling for PKCα, nitric oxide synthetase (NOS), and either GABA(C) or CtBP2 indicated GABAergic feedback onto RBCs via NOS-immunoreactive ACs. AII output analysis showed glycineric synapses with glycine receptor α1 expression between AII cells and OFF cone BCs and connexin 36-labeled gap junctions between AII cells and ON cone BCs. We conclude that microbats have a well developed rod pathway with great similarities to that of other mammals, but with an unusual IPL stratification pattern of RBCs and AIIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704856PMC
http://dx.doi.org/10.1523/JNEUROSCI.2072-12.2013DOI Listing

Publication Analysis

Top Keywords

rod pathway
16
rod bipolar
8
bipolar cells
8
aii amacrine
8
amacrine cells
8
rbc axons
8
dye injections
8
triple immunolabeling
8
aii cells
8
cells cone
8

Similar Publications

Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.

View Article and Find Full Text PDF

Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood.

View Article and Find Full Text PDF

Doping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer.

View Article and Find Full Text PDF

Longitudinal assessment of retinal and visual pathway electrophysiology and structure after high altitude exposure.

Graefes Arch Clin Exp Ophthalmol

January 2025

Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.

High altitude (HA) exposure induces impairments in visual function. This study was designed to dynamically observe visual function after returning to lowland and elucidate the underlying mechanism by examining the structure and function of retina and visual pathway. Twenty-three subjects were recruited before (Test 1), and one week (Test 2) and three months (Test 3) after their return from HA (4300 m) where they resided for 30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!