Hepatic ischemia-reperfusion (I/R) injury contributes to hepatic dysfunction and failure after liver transplantation, major hepatic resection, trauma, and hypovolemic shock. Therefore, reducing I/R injury is an important goal to improve the outcome of these procedures. Recently, high-mobility group box 1 protein (HMGB1) has been identified as a pathogenic mediator in several inflammatory diseases, including hepatic I/R. PNU-282987, a selective α7 nicotinic acetylcholine receptor agonist, prevents nuclear factor κB (NF-κB) activation and thereby inhibits cytokine secretion through a specific cholinergic anti-inflammatory pathway. Our study was designed to evaluate whether PNU-282987 would inhibit HMGB1 expression and prevent I/R-induced liver damage. C57BL/6 mice were randomly divided into 3 groups as follows: sham group, vehicle plus I/R group, and PNU-282987 plus I/R group. Mice were subjected to 70% partial hepatic I/R for 60 min and pretreated with either vehicle or with PNU-282987, and blood and hepatic tissue samples were collected at 3, 6, and 12 h following reperfusion. The results showed that pretreatment with PNU-282987 decreased serum transaminase levels and ameliorated liver injury after hepatic I/R. Moreover, pretreatment with PNU-282987 suppressed NF-κB activation, cytokine production (tumor necrosis factor α, interleukin 1β), and HMGB1 expression in liver after hepatic I/R. These observations suggest that PNU-282987 protects the liver from I/R injury possibly by inhibiting HMGB1 expression, suppressing cytokine production, and preventing NF-κB activation in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0b013e31827aa1f6DOI Listing

Publication Analysis

Top Keywords

hepatic i/r
16
i/r injury
12
nf-κb activation
12
hmgb1 expression
12
hepatic
9
i/r
9
pnu-282987 selective
8
selective α7
8
α7 nicotinic
8
nicotinic acetylcholine
8

Similar Publications

Background And Objective: Hepatic ischemia reperfusion injury (HIRI) is a common complication closely related to the prognosis of liver surgery, and effective treatment methods are still unavailable. SRT1720 has the characteristics of multifunction and multitarget which may cope with the multidirectional complex pathological process caused by HIRI. The present study aimed to explore the potential mechanism of SRT1720 in HIRI through a combination of network pharmacology, in vitro experiments and in vivo models.

View Article and Find Full Text PDF

Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia-reperfusion injury in male rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.

Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.

View Article and Find Full Text PDF

Trojan Horse-Like Biohybrid Nanozyme for Ameliorating Liver Ischemia-Reperfusion Injury.

Adv Healthc Mater

January 2025

Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Liver ischemia and reperfusion (I/R) injury is a reactive oxygen species (ROS)-related disease that occurs during liver transplantation and resection and hinders postoperative liver function recovery. Current approaches to alleviate liver I/R injury have limited effectiveness due to the short circulation time, poor solubility, and severe side effects of conventional antioxidants and anti-inflammatory drugs. Herein, a universal strategy is proposed to fabricate a Trojan horse-like biohybrid nanozyme (THBN) with hepatic-targeting capabilities.

View Article and Find Full Text PDF

Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.

Chin Med J (Engl)

January 2025

Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.

Background: Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!