Background: Changes in the intestinal and colonic proteome in patients with necrotizing enterocolitis (NEC) may help to characterize the disease pathology and identify new biomarkers and treatment targets for NEC.

Methods: Using gel-based proteomics, proteins in NEC-affected intestinal and colonic sections were compared with those in adjacent, near-normal tissue sections within the same patients. Western blot and immunohistochemistry were applied to crossvalidate proteomic data and histological location of some selected proteins.

Results: Thirty proteins were identified with differential expression between necrotic and vital small-intestine sections and 23 proteins were identified for colon sections. Five proteins were similarly affected in the small intestine and colon: histamine receptors (HRs), actins, globins, immunoglobulin, and antitrypsin. Two heat shock proteins (HSPs) were affected in the small intestine. Furthermore, proteins involved in antioxidation, angiogenesis, cytoskeleton formation, and metabolism were affected. Finally, secretory proteins such as antitrypsin, fatty-acid binding protein 5, and haptoglobin differed between NEC-affected and vital tissues.

Conclusion: NEC progression affects different pathways in the small intestine and colon. HSPs may play an important role, especially in the small intestine. The identified secretory proteins should be investigated as possible circulating markers of NEC progression in different gut regions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/pr.2012.182DOI Listing

Publication Analysis

Top Keywords

small intestine
16
necrotizing enterocolitis
8
intestinal colonic
8
proteins
8
proteins identified
8
sections proteins
8
intestine colon
8
secretory proteins
8
nec progression
8
intestinal proteome
4

Similar Publications

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Water beads are superabsorbent polymer balls. They were originally marketed for agricultural and decorative applications and are now sold as sensory toys. They can be harmful to children in 2 ways.

View Article and Find Full Text PDF

This case report highlights a potential vaccine safety concern associated with the Pseudorabies virus (PRV) live vaccine, which warrants further investigation for comprehensive understanding. Vaccine-induced immune thrombotic thrombocytopenia (VITT), a novel syndrome of adverse events following adenovirus vector COVID-19 vaccines, was observed after vaccination with Zoetis PR-VAC PLUS. This led to a 100% morbidity and high mortality among PRV-free Danish purebred pigs from Danish Genetics Co.

View Article and Find Full Text PDF

Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.

View Article and Find Full Text PDF

Oyster powder supplementation enhances immune function in mice partly through modulating the gut microbiota and arginine metabolism.

Food Funct

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.

Oysters are well-known for their health benefits such as immuno-modulatory functions. The intestinal microbiome serves as a key mediator between diet and immune regulation. This study aimed to investigate whether oyster consumption could alleviate cyclophosphamide (Cy)-induced immunosuppression by promoting intestinal homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!