The Hedgehog (HH) signaling pathway has important roles in tumorigenesis and in embryonal patterning. The Glioma-associated oncogene 1 (GLI1) is a key molecule in HH signaling, acting as a transcriptional effector and, moreover, is considered to be a potential therapeutic target for several types of cancer. To extend our previous focus on the implications of alternative splicing for HH signal transduction, we now report on an additional post-transcriptional mechanism with an impact on GLI1 activity, namely RNA editing. The GLI1 mRNA is highly edited at nucleotide 2179 by adenosine deamination in normal cerebellum, but the extent of this modification is reduced in cell lines from the cerebellar tumor medulloblastoma. Additionally, basal cell carcinoma tumor samples exhibit decreased GLI1 editing compared with normal skin. Interestingly, knocking down of either ADAR1 or ADAR2 reduces RNA editing of GLI1. This adenosine to inosine substitution leads to a change from Arginine to Glycine at position 701 that influences not only GLI1 transcriptional activity, but also GLI1-dependent cellular proliferation. Specifically, the edited GLI1, GLI1-701G, has a higher capacity to activate most of the transcriptional targets tested and is less susceptible to inhibition by the negative regulator of HH signaling suppressor of fused. However, the Dyrk1a kinase, implicated in cellular proliferation, is more effective in increasing the transcriptional activity of the non-edited GLI1. Finally, introduction of GLI1-701G into medulloblastoma cells confers a smaller increase in cellular growth relative to GLI1. In conclusion, our findings indicate that RNA editing of GLI1 is a regulatory mechanism that modulates the output of the HH signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594290PMC
http://dx.doi.org/10.4161/rna.23343DOI Listing

Publication Analysis

Top Keywords

rna editing
16
editing gli1
16
gli1
11
modulates output
8
hedgehog signaling
8
signaling pathway
8
transcriptional activity
8
cellular proliferation
8
signaling
5
rna
4

Similar Publications

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.

View Article and Find Full Text PDF

Structural insights into how Cas9 targets nucleosomes.

Nat Commun

December 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.

View Article and Find Full Text PDF

Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Nat Commun

December 2024

Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!