We explored a noninvasive optical method to determine the Joule heating of individual germanium nanowires. Using confocal μ-Raman spectroscopy, variations in the optical phonon frequency, in detail the downshifting of the first-order Stokes Raman band, are correlated to the temperature increase of vapor-liquid-solid grown germanium nanowires under an applied electrical bias. The germanium nanowires were found to handle high threshold current densities of more than 10(6) A cm(-2) before sustaining immediate deterioration. Failure of single crystalline germanium nanowires was directly observed when the applied electric field reached the breakdown point of 1.25 × 10(5) V cm(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/6/065701DOI Listing

Publication Analysis

Top Keywords

germanium nanowires
20
joule heating
8
μ-raman spectroscopy
8
germanium
5
nanowires
5
situ monitoring
4
monitoring joule
4
heating effects
4
effects germanium
4
nanowires μ-raman
4

Similar Publications

In this paper, the phototransistor behavior is investigated in the germanium-on-insulator (GeOI)-based junctionless nanowire (JL-NW) transistor under various light conditions. High responsivity and photosensitivity are attributed in the fully depleted regime within the visible and near-infrared bands. The impact of light is also investigated in detail on the electronic and transfer characteristics such as energy bandgap, carrier distribution, electrostatic potential, electric field, generation and recombination rates.

View Article and Find Full Text PDF

Dielectric Modulated Field-Effect Transistors (DMFETs) have emerged as promising candidates for label-free bioanalyte detection. However, the inherent short-channel effects in conventional DMFETs increase their static power dissipation significantly and limit their scalability and sensitivity. Therefore, FETs based on alternate conduction mechanism such as tunneling (TFETs), which are immune to the short-channel effects, appear to be a lucrative alternative to the MOSFETs for biosensing application.

View Article and Find Full Text PDF

Bottom-up growth offers precise control over the structure and geometry of semiconductor nanowires (NWs), enabling a wide range of possible shapes and seamless heterostructures for applications in nanophotonics and electronics. The most common vapor-liquid-solid (VLS) growth method features a complex interaction between the liquid metal catalyst droplet and the anisotropic structure of the crystalline NW, and the growth is mainly orchestrated by the triple-phase line (TPL). Despite the intrinsic mismatch between the droplet and the NW symmetries, its discussion has been largely avoided because of its complexity, which has led to the situation when multiple observed phenomena such as NW axial asymmetry or the oscillating truncation at the TPL still lack detailed explanation.

View Article and Find Full Text PDF

Tin-doped germanium quantum dots (Sn-doped Ge QDs)-decorated hexagonal silicon nanowires (h-Si NWs) were adopted to overcome the low infrared response of silicon and the excess dark current of germanium. High-quality Sn-doped Ge QDs with a narrow bandgap can be achieved through Ge-Sn co-sputtering on silicon nanowires by reducing the contact area between heterojunction materials and Sn-induced germanium crystallization. The absorption limit of the heterostructure is extended to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!