Multiwalled carbon nanotubes (MWCNT) were homogeneously covered with a bio-functional polydopamine (PDOP) by a simple dip-coating approach in mild basic solution. Then, uniformly dispersed and highly loaded platinum nanoparticles (PtNPs) were deposited on MWCNT@PDOP by a mild reductant, and were characterized by transmission electron microscopy and x-ray photoelectron spectroscopy. Afterwards, this nanocomposite was modified on the glass carbon electrode and applied to simultaneously determine dopamine (DA) and uric acid (UA) by differential pulse voltammetry (DPV). Results showed that a linear electro-oxidation response was found for DA and UA in the range of 0.25-20 μM and 0.3-13 μM with the detection limit (S/N = 3) of 0.08 μM and 0.12 μM, respectively. In addition, the detection sensitivities for DA and UA by DPV were 1.03 μA μM(-1) and 2.09 μA μM(-1), respectively, which were much higher than those from a cyclic voltammogram. Finally, the reproducibility and stability of the nanocomposite were also evaluated, demonstrating that such MWCNT@PDOP@PtNPs can be a promising candidate for advanced electrode material in electrochemical sensing and other electrocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/6/065501DOI Listing

Publication Analysis

Top Keywords

uniformly dispersed
8
carbon nanotubes
8
dopamine uric
8
uric acid
8
high loading
4
loading uniformly
4
dispersed nanoparticles
4
nanoparticles polydopamine
4
polydopamine coated
4
coated carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!