Leveillula taurica is an obligate fungal pathogen that causes powdery mildew disease on a broad range of plants, including important crops such as pepper, tomato, eggplant, onion, cotton, and so on. The early stage of this disease is difficult to diagnose and the disease can easily spread unobserved; for example, in pepper and tomato production fields and greenhouses. The objective of this study was to develop a detection and quantification method of L. taurica biomass in pepper leaves with special regard to the early stages of infection. We monitored the development of the disease to time the infection process on the leaf surface as well as inside the pepper leaves. The initial and final steps of the infection taking place on the leaf surface were consecutively observed using a dissecting microscope and a scanning electron microscope. The development of the intercellular mycelium in the mesophyll was followed by light and transmission electron microscopy. A pair of L. taurica-specific primers was designed based on the internal transcribed spacer sequence of L. taurica and used in real-time polymerase chain reaction (PCR) assay to quantify the fungal DNA during infection. The specificity of this assay was confirmed by testing the primer pair with DNA from host plants and also from another powdery mildew species, Oidium neolycopersici, infecting tomato. A standard curve was obtained for absolute quantification of L. taurica biomass. In addition, we tested a relative quantification method by using a plant gene as reference and the obtained results were compared with the visual disease index scoring. The real-time PCR assay for L. taurica provides a valuable tool for detection and quantification of this pathogen in breeding activities as well in plant-microbe interaction studies.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-08-12-0198-RDOI Listing

Publication Analysis

Top Keywords

detection quantification
12
pepper leaves
12
leveillula taurica
8
powdery mildew
8
pepper tomato
8
quantification method
8
taurica biomass
8
leaf surface
8
pcr assay
8
taurica
6

Similar Publications

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Detection and quantification of disease-related biomarkers in wastewater samples, denominated Wastewater-based Surveillance (WBS), has proven a valuable strategy for studying the prevalence of infectious diseases within populations in a time- and resource-efficient manner, as wastewater samples are representative of all cases within the catchment area, whether they are clinically reported or not. However, analysis and interpretation of WBS datasets for decision-making during public health emergencies, such as the COVID-19 pandemic, remains an area of opportunity. In this article, a database obtained from wastewater sampling at wastewater treatment plants (WWTPs) and university campuses in Monterrey and Mexico City between 2021 and 2022 was used to train simple clustering- and regression-based risk assessment models to allow for informed prevention and control measures in high-affluence facilities, even if working with low-dimensionality datasets and a limited number of observations.

View Article and Find Full Text PDF

Exploring Mosquito Excreta as an Alternative Sample Type for Improving Arbovirus Surveillance in Australia.

Pathogens

January 2025

Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC 3220, Australia.

Current arbovirus surveillance strategies in Australia involve mosquito collection, species identification, and virus detection. These processes are labour-intensive, expensive, and time-consuming and can lead to delays in reporting. Mosquito excreta has been proposed as an alternative sample type to whole mosquito collection, with potential to streamline the virus surveillance pipeline.

View Article and Find Full Text PDF

Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager.

Sensors (Basel)

January 2025

Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.

We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!