Only recently has the critical importance of electromagnetic (EM) field interactions in biology and medicine been recognized. We review the phenomenon of resonance signaling, discussing how specific frequencies modulate cellular function to restore or maintain health. The application of EM-tuned signals represents more than merely a new tool in information medicine. It can also be viewed in the larger context of EM medicine, the all-encompassing view that elevates the EM over the biochemical. The discovery by Zhadin that ultrasmall magnetic intensities are biologically significant suggests that EM signaling is endogenous to cell regulation, and consequently that the remarkable effectiveness of EM resonance treatments reflects a fundamental aspect of biological systems. The concept that organisms contain mechanisms for generating biologically useful electric signals is not new, dating back to the nineteenth century discovery of currents of injury by Matteucci. The corresponding modern-day version is that ion cyclotron resonance magnetic field combinations help regulate biological information. The next advance in medicine will be to discern and apply those EM signaling parameters acting to promote wellness, with decreasing reliance on marginal biochemical remediation and pharmaceuticals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/15368378.2012.743908 | DOI Listing |
JACC Cardiovasc Imaging
January 2025
Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:
Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.
View Article and Find Full Text PDFChem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania.
The application of spread-spectrum signals (arbitrary pulse width and position (APWP) sequences) in air-coupled resonant ultrasound spectroscopy is studied. It was hypothesized that spread-spectrum signal optimization should be based on te signal to noise ratio (SNR). Six APWP signal optimization criteria were proposed for this purpose.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
A bolt loosening detection method based on the summation coefficient of the absolute spectrum ratio technique is proposed to address the prevalent issue of bolt loosening in mechanical connections. This proposed method involves initially collecting vibration and rotation speed signals of the motor bolt connection structure, acquiring the baseline spectrum curve of a healthy structure and the spectrum curves of non-healthy structures under different degrees of bolt looseness through chirp Fourier transform (CFT). Subsequently, the spectrum ratio curves between healthy and non-healthy structures are calculated for different degrees of bolt loosening, and then the Summation Coefficient of Absolute Spectrum Ratio (SCASR) is defined to indicate the looseness.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process MOE, Southwest University of Science and Technology, Mianyang 621010, China.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!