Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.

Environ Sci Technol

Department of Geography and Environmental Engineering, Johns Hopkins University, 313 Ames Hall 3400 North Charles Street Baltimore, Maryland 21218, United States.

Published: February 2013

HOBr, formed via oxidation of bromide by free available chlorine (FAC), is frequently assumed to be the sole species responsible for generating brominated disinfection byproducts (DBPs). Our studies reveal that BrCl, Br(2), BrOCl, and Br(2)O can also serve as brominating agents of the herbicide dimethenamid in solutions of bromide to which FAC was added. Conditions affecting bromine speciation (pH, total free bromine concentration ([HOBr](T)), [Cl(-)], and [FAC](o)) were systematically varied, and rates of dimethenamid bromination were measured. Reaction orders in [HOBr](T) ranged from 1.09 (±0.17) to 1.67 (±0.16), reaching a maximum near the pK(a) of HOBr. This complex dependence on [HOBr](T) implicates Br(2)O as an active brominating agent. That bromination rates increased with increasing [Cl(-)], [FAC](o) (at constant [HOBr](T)), and excess bromide (where [Br(-)](o)>[FAC](o)) implicate BrCl, BrOCl, and Br(2), respectively, as brominating agents. As equilibrium constants for the formation of Br(2)O and BrOCl (aq) have not been previously reported, we have calculated these values (and their gas-phase analogues) using benchmark-quality quantum chemical methods [CCSD(T) up to CCSDTQ calculations plus solvation effects]. The results allow us to compute bromine speciation and hence second-order rate constants. Intrinsic brominating reactivity increased in the order: HOBr ≪ Br(2)O < BrOCl ≈ Br(2) < BrCl. Our results indicate that species other than HOBr can influence bromination rates under conditions typical of drinking water and wastewater chlorination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es302730hDOI Listing

Publication Analysis

Top Keywords

dimethenamid solutions
8
solutions bromide
8
free chlorine
8
brominating agents
8
bromine speciation
8
[cl-] [fac]o
8
bromination rates
8
br2o brocl
8
brocl
5
hobr
5

Similar Publications

Pre-emergence herbicides used in urban and agricultural settings: dissipation and ecological implications.

Environ Geochem Health

November 2024

Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.

Herbicides are widely recognized as the most cost-effective solution for weed control, but their extensive use in both urban and agricultural settings raise serious concerns about nontarget effects. We assessed the possible hazards associated with pre-emergence herbicides such as dimethenamid-P, metazachlor, and pyroxasulfone, which are frequently applied in both urban and agricultural soils. The dissipation rate constant values (k day: 0.

View Article and Find Full Text PDF

Adsorption-desorption of dimethenamid and fenarimol onto three agricultural soils as affected by treated wastewater and fresh sewage sludge-derived dissolved organic carbon.

J Environ Manage

July 2018

Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas-Universidad de Granada (CSIC-UGR), Avda. de las Palmeras, 4, 18100-Armilla, Granada, Spain. Electronic address:

The use of treated wastewaters (TWW) in agriculture is widening in areas suffering drought, such as southern Europe, to preserve freshwater supply for human consumption. The composition of TWW, especially concerning their organic carbon (OC) content, has been demonstrated to influence the processes governing the behavior of non-ionic pesticides in soils. Three OC-poor agricultural soils (SV, RM1 and RM3) from the province of Granada (Spain) were chosen for the assessment of the adsorption and desorption of the herbicide dimethenamid (DIM) and the fungicide fenarimol (FEN).

View Article and Find Full Text PDF

Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.

Environ Sci Technol

February 2013

Department of Geography and Environmental Engineering, Johns Hopkins University, 313 Ames Hall 3400 North Charles Street Baltimore, Maryland 21218, United States.

HOBr, formed via oxidation of bromide by free available chlorine (FAC), is frequently assumed to be the sole species responsible for generating brominated disinfection byproducts (DBPs). Our studies reveal that BrCl, Br(2), BrOCl, and Br(2)O can also serve as brominating agents of the herbicide dimethenamid in solutions of bromide to which FAC was added. Conditions affecting bromine speciation (pH, total free bromine concentration ([HOBr](T)), [Cl(-)], and [FAC](o)) were systematically varied, and rates of dimethenamid bromination were measured.

View Article and Find Full Text PDF

HOCl is often assumed to represent the active oxidant in solutions of free available chlorine (FAC). We present evidence that Cl(2)O and Cl(2) can play a greater role than HOCl during chlorination of the herbicide dimethenamid. Reaction orders in [FAC] were determined at various solution conditions and ranged from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!