Molecular simulation and experimental studies of a mesoporous ZSM-5 type molecular sieve.

Phys Chem Chem Phys

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China.

Published: February 2013

The mesoporous zeolite is a novel porous material possessing mesopores as well as the inherent micropores of zeolites. This material can exhibit the dual merits of two different pore structures and enable zeolites to have maximum structural functions. During the past few decades, various synthetic strategies have been well developed. However, up to now, there has only been a few attempts to model mesoporous zeolites. In this paper, the structural properties of a mesoporous ZSM-5 type molecular sieve, which has mesopore walls that are made up of ZSM-5 zeolite-like frameworks, were studied using an atomistic model. The full-atom model of the mesoporous ZSM-5 type molecular sieve was constructed using a molecular modeling technique. The structure model was characterized by estimating the nitrogen accessible solvent surface area, small-angle and wide-angle X-ray diffraction patterns, toluene and benzene adsorption. It was found that these simulated results match well with the experimental data. Furthermore, the present approach can be extended to construct other micro-mesoporous molecular sieve structure models in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp43900jDOI Listing

Publication Analysis

Top Keywords

molecular sieve
16
mesoporous zsm-5
12
zsm-5 type
12
type molecular
12
model mesoporous
8
molecular
6
mesoporous
5
molecular simulation
4
simulation experimental
4
experimental studies
4

Similar Publications

Cystic and alveolar echinococcosis are severe zoonotic diseases characterized by long asymptomatic periods lasting months or years. Viable Echinococcus spp. eggs released into the environment through the feces of canids can infect humans through accidental ingestion via hand-to-mouth contact or consumption of contaminated food or water.

View Article and Find Full Text PDF

The properties and device applications of 2D semiconductors are highly sensitive to intrinsic structural defects due to their ultrathin nature. CuInSe (CIS) materials own excellent optoelectronic properties and ordered copper vacancies, making them widely applicable in photovoltaic and photodetection fields. However, the synthesis of 2D CIS nanoflakes remains challenging due to the nonlayered structure, multielement composition, and the competitive growth of various by-products, which further hinders the exploration of vacancy-related optoelectronic devices.

View Article and Find Full Text PDF

Synthesis of piceid lipoate and the effect and micro-mechanism of alpha-lipoic acid moiety on its antioxidant activity.

Food Res Int

January 2025

Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

A lipophilic piceid lipoate (PIL) was synthesized by enzymatic method to enhance the antioxidant activity of piceid and improve its state in oil system. The highest substrate conversion of 93.71 % was obtained in γ-valerolactone using Novozym 435 as a catalyst, with a piceid/lipoic acid ratio of 1:15 (mM/mM), an enzyme dosage of 40 mg/mL, and 4 Å molecular sieves at 400 mg/mL.

View Article and Find Full Text PDF

The most commonly used homogeneous catalyst for fatty acid esterification is a corrosive sulphuric acid. However, this requires costly investment in non-corrosive equipment, presents a safety risk, is time consuming, and increases effluent generation. In this study, inorganic 3D heteroborane cluster strong acids are employed for the first time as homogeneous catalysts.

View Article and Find Full Text PDF

Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction.

Angew Chem Int Ed Engl

January 2025

Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.

Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!