Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering.

Biochem Biophys Res Commun

Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.

Published: February 2013

In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D(2)O or H(2)O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D(T)) of the hydration water in the first layer were found to be 1.2×10(-5) cm(2)/s and 1.7×10(-5) cm(2)/s for F-actin and G-actin, respectively, while that for bulk water was 2.8×10(-5) cm(2)/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D(T) values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2013.01.021DOI Listing

Publication Analysis

Top Keywords

f-actin g-actin
24
hydration water
16
water molecules
16
water
12
internal dynamics
12
quasielastic neutron
12
neutron scattering
12
hydration layer
12
bulk water
12
dynamics actin
8

Similar Publications

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.

View Article and Find Full Text PDF

Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.

View Article and Find Full Text PDF

An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!