1. The addition of 4 mM acetoacetate or DL-beta-hydroxybutyrate to the incubation medium decreased the rate of protein synthesis without influencing the rate of protein degradation in extensor digitorum communis (EDC) muscles from fed chicks and decreased the rates of protein synthesis and degradation in muscles from fasted chicks. 2. Ketone bodies markedly decreased intracellular concentrations of glutamine in EDC muscles from fed chicks by increasing glutamine oxidation. 3. The addition of 0.5 mM glutamine to incubation media containing 1.0 mM glutamine reversed the ketone body-induced decrease in intracellular glutamine concentration to the control value and blocked the inhibiting effect of ketone bodies on protein synthesis in skeletal muscles from fed chicks. 4. The addition of 5 mM pyruvate blocked the ability of ketone bodies to increase glutamine oxidation and prevented the associated decrease in intracellular glutamine concentration and the rate of protein synthesis in EDC muscles from fed chicks. 5. These results suggest that ketone bodies can act directly on skeletal muscle to inhibit the rate of protein synthesis in muscles from fed chicks by decreasing intracellular glutamine concentration by increasing its oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0020-711x(90)90338-4DOI Listing

Publication Analysis

Top Keywords

ketone bodies
20
protein synthesis
20
muscles fed
20
fed chicks
20
rate protein
16
edc muscles
12
intracellular glutamine
12
glutamine concentration
12
bodies protein
8
skeletal muscle
8

Similar Publications

Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.

View Article and Find Full Text PDF

Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism.

View Article and Find Full Text PDF

Objectives: While ketone bodies are not the main heart fuel, exercise may increase their uptake. Objectives: This study aimed to investigate the effect of 6-week endurance training and Pyruvate dehydrogenase kinase 4 )PDK4( inhibition on ketone bodies metabolism in the heart of diabetic rats with emphasis on the role of Peroxisome proliferator-activated receptor-gamma coactivator PGC-1alpha (PGC-1α).

Materials And Methods: Sixty male Wistar rats were divided into eight groups: healthy control group (CONT), endurance training group (TRA), diabetic group (DM), DM + EX group, Dichloroacetate (DCA) group, DM + DCA group, TRA + DCA group, and DM + TRA + DCA group.

View Article and Find Full Text PDF

Acetonemic vomiting: a potential complication of treatment with glucagon-like peptide-1 receptor agonists especially in lean type 2 diabetes patients.

Diabetol Int

January 2025

Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610 Japan.

Objectives: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are now widely used for treating type 2 diabetes mellitus (T2DM) and obesity. We examined their association with acetonemic vomiting, especially when given to patients with low body weight, in hopes of achieving early recognition of this complication which is potentially life-threatening if not dealt with appropriately.

Methods: Cases identified incidentally are described and discussed referring to prior reports.

View Article and Find Full Text PDF

OXCT1 succinylation and activation by SUCLA2 promotes ketolysis and liver tumor growth.

Mol Cell

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China. Electronic address:

Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!