AI Article Synopsis

Article Abstract

Until recently, the freeze-drying process and formulation development have suffered from a lack of microscale analytical tools. Using such an analytical tool should decrease the required sample volume and also shorten the duration of the experiment compared to a laboratory scale setup. This study evaluated the applicability of Raman spectroscopy for in-line monitoring of a microscale freeze-drying process. The effect of cooling rate and annealing step on the solid-state formation of mannitol was studied. Raman spectra were subjected to principal component analysis to gain a qualitative understanding of the process behavior. In addition, mannitol solid-state form ratios were semiquantitatively analyzed during the process with a classical least-squares regression. A standard cooling rate of 1 °C/min with or without an annealing step at -10 °C resulted in a mixture of α, β, δ, and amorphous forms of mannitol. However, a standard cooling rate induced the formation of mannitol hemihydrate, and a secondary drying temperature of +60 °C was required to transform the hemihydrate form to the more stable anhydrous polymorphs. A fast cooling rate of 10 °C/min mainly produced δ and amorphous forms of mannitol, regardless of annealing. These results are consistent with those from larger scale equipment. In-line monitoring the solid-state form of a sample is feasible with a Raman spectrometer coupled microscale freeze-drying stage. These results demonstrate the utility of a rapid, in-line, low sample volume method for the semiquantitative analysis of the process and formulation development of freeze-dried products on the microscale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac3027349DOI Listing

Publication Analysis

Top Keywords

cooling rate
16
microscale freeze-drying
12
raman spectroscopy
8
freeze-drying process
8
process formulation
8
formulation development
8
sample volume
8
in-line monitoring
8
annealing step
8
formation mannitol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!