Shape-controlled metal nanocrystals are a new generation of nanoscale catalysts. Depending on their shapes, these nanocrystals exhibit various surface facets, and the assignments of their surface facets have routinely been used to rationalize or predict their catalytic activity in a variety of chemical transformations. Recently we discovered that for 1-dimensional (1D) nanocrystals (Au nanorods), the catalytic activity is not constant along the same side facets of single nanorods but rather differs significantly and further shows a gradient along its length, which we attributed to an underlying gradient of surface defect density resulting from their linear decay in growth rate during synthesis (Nat. Nanotechnol.2012, 7, 237-241). Here we report that this behavior also extends to 2D nanocrystals, even for a different catalytic reaction. By using super-resolution fluorescence microscopy to map out the locations of catalytic events within individual triangular and hexagonal Au nanoplates in correlation with scanning electron microscopy, we find that the catalytic activity within the flat {111} surface facet of a Au nanoplate exhibits a 2D radial gradient from the center toward the edges. We propose that this activity gradient results from a growth-dependent surface defect distribution. We also quantify the site-specific activity at different regions within a nanoplate: The corner regions have the highest activity, followed by the edge regions and then the flat surface facets. These discoveries highlight the spatial complexity of catalytic activity at the nanoscale as well as the interplay amid nanocrystal growth, morphology, and surface defects in determining nanocatalyst properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja309948y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!