Two-dimensional 1H-NMR spectra were carried out on bovine Cu(I),Zn superoxide dismutase. The ring protons of the single tyrosine and of the 4 phenylalanines were identified from COSY spectra. From NOESY spectra all imidazole C-resonances could be specifically assigned to each of the 8 histidines using the crystal coordinates of the Cu(II),Zn enzyme. Since 6 histidines are involved in the structure of the active site, this result implies nearly identical active site conformations for the two oxidation states of the catalytic cycle of this enzyme, in line with its diffusion-limited rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(90)80720-4DOI Listing

Publication Analysis

Top Keywords

active site
12
superoxide dismutase
8
assignment imidazole
4
imidazole resonances
4
resonances two-dimensional
4
two-dimensional proton
4
proton nmr
4
spectra
4
nmr spectra
4
spectra bovine
4

Similar Publications

Determination of Site Occupancy in the M-Pd-Zn (M = Cu, Ag, and Au) γ-Brass Phase by CALculation of PHAse Diagrams Modeling and Rietveld Refinement.

Inorg Chem

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.

View Article and Find Full Text PDF

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.

View Article and Find Full Text PDF

A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.

View Article and Find Full Text PDF

High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!