Characterization of Salmonella food isolates with concurrent resistance to ceftriaxone and ciprofloxacin.

Foodborne Pathog Dis

Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

Published: January 2013

Foodborne salmonellosis is an important public health problem worldwide. Most human Salmonella infections occur through the consumption of contaminated food of animal origin. The study reported the first isolation of two Salmonella enterica serovar Oranienburg strains from pork in China with concurrent resistance to ciprofloxacin and ceftriaxone. Both isolates also showed resistance to norfloxacin, trimethoprim-sulfamethoxazole, and chloramphenicol, and an elevated minimal inhibitory concentraton of azithromycin; one strain was also resistant to amikacin, gentamicin, tetracycline, and amoxicillin-clavulanic acid. Salmonella ceftriaxone resistance was due to the production of IncN plasmidborne CTX-M-14 ESBL, and their ciprofloxacin resistance was mediated by target mutations and efflux pump activity. This is the first time that ceftriaxone- and ciprofloxacin-resistant Salmonella was reported in meat products, which may be due to the uses of antibiotics in animal production. The study warrants the continuous surveillance of multidrug-resistant Salmonella in meat products and cautious use of antibiotics in food animals.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2012.1266DOI Listing

Publication Analysis

Top Keywords

concurrent resistance
8
meat products
8
resistance
5
salmonella
5
characterization salmonella
4
salmonella food
4
food isolates
4
isolates concurrent
4
resistance ceftriaxone
4
ceftriaxone ciprofloxacin
4

Similar Publications

Unlabelled: Antibiotic resistance is frequently observed shortly after the clinical introduction of an antibiotic. Whether and how frequently that resistance occurred before the introduction is harder to determine, as isolates could not have been tested for resistance before an antibiotic was discovered. Historical collections, like the British National Collection of Type Cultures (NCTC), stretching back to 1885, provide a window into this history.

View Article and Find Full Text PDF

What Is Known About This Topic?: Global human cases of zoonotic influenza A(H5N6) have increased significantly in recent years, primarily due to widespread circulation of clade 2.3.4.

View Article and Find Full Text PDF

Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia.

Endocrinology

January 2025

Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, 610065, Sichuan University, Chengdu, P.R. China.

Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low temperature effects on growth performance and growth hormone (GH) resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16°C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased insulin-like growth factor-1 (IGF-1) levels.

View Article and Find Full Text PDF

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves.

Biology (Basel)

January 2025

National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!