To study the catalytic activity of single nanoparticles (NPs) electrochemically, we investigated the applicability of a novel method for nanoparticle detection as a means to immobilize individual NPs. This method consists of analyzing the current steps that can be measured at an ultramicroelectrode (UME) when a colloid of NPs is injected into an electrolyte containing an electroactive species, that is turned over at the NP but not the UME surface. We have measured these current steps for the hydrazine oxidation at Pt NPs landing on a lithographically fabricated Au UME, showing a mean step size comparable to theory and prior measurements. We found a reduced landing frequency with respect to values reported in the literature and those predicted from theory, while the current step distribution showed a long tail of large current steps. This could be explained by the particle aggregation, which would lower the effective NP concentration and therefore lower the landing frequency and would result in higher current steps when aggregates reach the electrode. Cyclic voltammetry (CV) measurements of the Pt-modified Au UME showed a signal characteristic of the presence of Pt, while electron microscopy revealed aggregated NPs, after landings were performed in the presence of hydrazine or hydrogen gas. Conversely, no aggregates were found after particles were injected in absence of such reducing agents, while CV still suggested the presence of Pt, indicating individual particles. The finding, that landing nanoparticles in the presence of hydrazine yields NP aggregates on the surface, means that this particular method is currently not suited for the preparation of individually immobilized particles to facilitate catalysis studies at individual nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3040566DOI Listing

Publication Analysis

Top Keywords

current steps
16
landing frequency
8
presence hydrazine
8
nps
5
current
5
influence hydrazine-induced
4
hydrazine-induced aggregation
4
aggregation electrochemical
4
electrochemical detection
4
detection platinum
4

Similar Publications

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.

View Article and Find Full Text PDF

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

Mixed reality for preoperative planning and intraoperative assistance of surgical correction of complex congenital heart defects.

J Thorac Cardiovasc Surg

January 2025

Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.

Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).

Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.

View Article and Find Full Text PDF

Kidney replacement therapy (KRT) is one of the most energy-consuming and waste-producing medical treatments. Reducing the need of dialysis is therefore an environmentally friendly choice. However, preferring prevention, lifestyle-related interventions and patient education to drugs is time consuming and most physicians are already overburdened by the many demands of routine clinical practice.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) involves the topical application of a photosensitizer and its activation by visible light, leading to the generation of protoporphyrin IX (PpIX) and reactive oxygen species. Daylight photodynamic therapy (dPDT), a variant utilizing natural sunlight as the energy source, enhances procedural flexibility by eliminating the need for specialized equipment. dPDT has been effectively used in dermatology to treat various cutaneous disorders, including neoplastic and infectious diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!