Delaying reverse transcription does not increase sensitivity of HIV-1 to human TRIM5α.

PLoS One

Institut National de la Santé et de la Recherche Médicale (INSERM) U941, Paris, France.

Published: August 2013

Background: Because uncoating of the capsid is linked to reverse transcription, modifications that delay this process lead to the persistence in the cytoplasm of capsids susceptible to recognition by the human restriction factor TRIM5α (hTRIM5α). It is unknown, however, if increasing the time available for capsid-hTRIM5α interactions would actually render viruses more sensitive to hTRIM5α.

Results: Viral sensitivity to hTRIM5α was evaluated by comparing their replication in human U373-X4 cells in which hTRIM5α activity had or had not been inhibited by overexpression of human TRIM5γ. No differences were observed comparing wild-type HIV-1 and variants carrying mutations in reverse transcriptase or the central polypurine tract that delayed the completion of reverse transcription. In addition, the effect of delaying the onset of reverse transcription for several hours by treating target cells with nevirapine was evaluated using viral isolates with different sensitivities to hTRIM5α. Delaying reverse transcription led to a time-dependent loss in viral infectivity that was increased by inhibiting capsid-cyclophilin A interactions, but did not result in increased viral sensitivity to hTRIM5α, regardless of their intrinsic sensitivity to this restriction factor.

Conclusions: Consistent with prior studies, the HIV-1 capsid can be targeted for destruction by hTRIM5α, but different strains display considerable variability in their sensitivity to this restriction factor. Capsids can also be lost more slowly through a TRIM5α-independent process that is accelerated when capsid-cyclophilin A interactions are inhibited, an effect that may reflect changes in the intrinsic stability of the capsid. Blocking the onset or delaying reverse transcription does not, however, increase viral sensitivity to hTRIM5α, indicating that the recognition of the capsids by hTRIM5α is completed rapidly following entry into the cytoplasm, as previously observed for the simian restriction factors TRIM-Cyp and rhesus TRIM5α.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540060PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052434PLOS

Publication Analysis

Top Keywords

reverse transcription
24
delaying reverse
12
viral sensitivity
12
sensitivity htrim5α
12
transcription increase
8
restriction factor
8
htrim5α
8
capsid-cyclophilin interactions
8
sensitivity restriction
8
transcription
6

Similar Publications

Amniotic Fluid as a Potential Treatment for Vocal Fold Scar in a Rabbit Model.

J Voice

January 2025

Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.

Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.

Study Design: Randomized, controlled trial.

View Article and Find Full Text PDF

Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.

View Article and Find Full Text PDF

Genome-wide association analysis of key genes for feed efficiency in Qingyuan Partridge chickens.

Poult Sci

December 2024

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China. Electronic address:

Qingyuan Partridge chickens represent a notable breed of high-quality, slow-growing chickens. The cost of feed constitutes 65-70 % of the total breeding expense for Qingyuan Partridge chickens. Enhancing feed utilization efficiency and reducing feed consumption are crucial for the advancement of Qingyuan Partridge chickens and the broader poultry industry.

View Article and Find Full Text PDF

Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis.

Anal Chem

January 2025

State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.

Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the role of ferroptosis in the occurrence of postoperative cognitive dysfunction (POCD) using a mouse model and to elucidate whether electroacupuncture (EA) can improve POCD by suppressing ferroptosis via the transferrin receptor 1 (TFR1)-divalent metal transporter 1 (DMT1)-ferroportin (FPN) pathway.

Methods: The experiment involved three groups: the control group, the POCD group and the POCD + EA group. The POCD animal model was established using sevoflurane anesthesia and tibial fracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!