A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

β-Arrestin-kinase scaffolds: turn them on or turn them off? | LitMetric

β-Arrestin-kinase scaffolds: turn them on or turn them off?

Wiley Interdiscip Rev Syst Biol Med

Department of Biomedical Sciences, University of California Riverside, Riverside, CA, USA.

Published: July 2013

G-protein-coupled receptors (GPCRs) can signal through heterotrimeric G-proteins or through β-arrestins to elicit responses to a plethora of extracellular stimuli. While the mechanisms underlying G-protein signaling is relatively well understood, the mechanisms by which β-arrestins regulate the diverse set of proteins with which they associate remain unclear. Multi-protein complexes are a common feature of β-arrestin-dependent signaling. The first two such complexes discovered were the mitogen-activated kinases modules associated with extracellular regulated kinases (ERK1/2) and Jnk3. Subsequently a number of other kinases have been shown to undergo β-arrestin-dependent regulation, including Akt, phosphatidylinositol-3kinase (PI3K), Lim-domain-containing kinase (LIMK), calcium calmodulin kinase II (CAMKII), and calcium calmodulin kinase kinase β (CAMKKβ). Some are positively and some negatively regulated by β-arrestin association. One of the missing links to understanding these pathways is the molecular mechanisms by which the activity of these kinases is regulated. Do β-arrestins merely serve as scaffolds to bring enzyme and substrate together or do they have a direct effect on the enzymatic activities of target kinases? Recent evidence suggests that both mechanisms are involved and that the mechanisms by which β-arrestins regulate kinase activity varies with the target kinase. This review discusses recent advances in the field focusing on 5 kinases for which considerable mechanistic detail and specific sites of interaction have been elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wsbm.1203DOI Listing

Publication Analysis

Top Keywords

mechanisms β-arrestins
8
β-arrestins regulate
8
calcium calmodulin
8
calmodulin kinase
8
kinase
6
mechanisms
5
kinases
5
β-arrestin-kinase scaffolds
4
scaffolds turn
4
turn turn
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!