Efficiency of different heterologous promoters in the unicellular microalga Chlamydomonas reinhardtii.

Biotechnol Prog

Lab Bioquímica y Biología Molecular. Departamento de Química y Ciencia de Materiales, Facultad de Ciencias Experimentales, Universidad de Huelva, Avda. Fuerzas Armadas s/n, 21007, Huelva, Spain.

Published: September 2013

Despite the biotechnological interest of microalgae, no robust and stable methods for genetic transformation of most microalgal strains exist. The scanty and disperse data about the efficiency of heterologous promoters in microalgae and the use of different transformation methods, DNA quantities and reporter genes in the existing studies makes very difficult a real comparison of their efficiency. Using Chlamydomonas reinhardtii as a host, we have evaluated the efficiency of the heterologous promoters of cauliflower mosaic virus 35S (CaMV 35S) and Agrobacterium nopaline synthase (NOS) genes. These promoters were fused to the paromomycin conferring-resistance aminoglycoside 3'-phosphotransferase encoding gene (APHVIII), and C. reinhardtii was transformed by the glass beads agitation method. The transformation efficiency and the APHVIII transcript and protein levels were evaluated in a series of transformants for each promoter. The chimeric promoter HSP70A/RBCS2 and the promoter-less APHVIII marker gene were used for comparison. We found significantly higher transformation efficiencies and higher level of APHVIII expression in those transformants harboring the NOS promoter than in those transformed with CaMV 35S promoter. The NOS promoter, widely used for genetic manipulation of higher plants, has been very rarely used for the transformation of microalgae. The results shown here suggest the possibilities of this heterologous promoter as an efficient system for the genetic manipulation of microalgae.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.1690DOI Listing

Publication Analysis

Top Keywords

efficiency heterologous
12
heterologous promoters
12
chlamydomonas reinhardtii
8
camv 35s
8
genetic manipulation
8
promoter
6
efficiency
5
transformation
5
promoters
4
promoters unicellular
4

Similar Publications

Chitinases are important virulence factors in Vibrio for degrading the chitin-rich barrier of shrimp.

Int J Biol Macromol

December 2024

School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China. Electronic address:

Vibrio-induced diseases pose a significant threat to shrimp aquaculture. While the mechanisms underlying Vibrio penetration of shrimp shells and the gastrointestinal tract remain unclear, this study implicates chitinases as critical virulence factors. Despite their inability to utilize chitin or shrimp shells as sole carbon and nitrogen sources, three major shrimp pathogens-V.

View Article and Find Full Text PDF

Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species.

View Article and Find Full Text PDF

Ribosome engineering of Myxococcus xanthus for enhancing the heterologous production of epothilones.

Microb Cell Fact

December 2024

State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.

Background: Ribosome engineering is a semi-empirical technique used to select antibiotic-resistant mutants that exhibit altered secondary metabolism. This method has been demonstrated to effectively select mutants with enhanced synthesis of natural products in many bacterial species, including actinomycetes. Myxobacteria are recognized as fascinating producers of natural active products.

View Article and Find Full Text PDF

Characterization and rational engineering of a novel laccase from Geobacillus thermocatenulatus M17 for improved lignin degradation activity.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China. Electronic address:

Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E.

View Article and Find Full Text PDF

Unlocking Green Biomanufacturing Potential: Superior Heterologous Gene Expression with a T7 Integration Overexpression System in .

ACS Synth Biol

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.

Industrial biotechnology employs cells for producing valuable products and serving as biocatalysts sustainably, addressing resource, energy, and environmental issues. is a preferred host for creating microbial chassis cells and producing industrial enzymes and functional nutritional products. In this study, a dual-module T7 integration expression system in was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!