Background: A limitation to efficient lentivirus-mediated airway gene transfer is the lack of receptors to commonly used viral envelopes on the luminal surface of airway epithelia. The use of viral envelopes with natural tropism to the airway could be useful for overcoming this limitation.
Methods: We investigated influenza hemagglutinin (HA) pseudotyped equine infectious anemia virus-derived lentiviral vector-mediated gene transfer to the airway epithelium of adult and newborn mice. For these studies, high-titer vectors were delivered by intranasal administration. In addition, we tested the feasibility of vector re-dosing to the nasal airway.
Results: Delivery of high-titer HA pseudotyped lentiviral vectors by nasal administration to newborn mouse pups or adult mice results in the efficient transduction of airway epithelial cells in the nose, trachea, and lungs. In the nose, vector expression was predominant in the respiratory epithelium and was not observed in the olfactory epithelium. In the trachea and large airways of the lung, approximately 46% and 40%, respectively, of surface epithelial cells could be transduced. The efficiency of re-dosing to the nasal airway of mice was found to be dependent of the age of the animal when the first dose is administered, as well as the length of time between doses.
Conclusions: A single intranasal dose of concentrated influenza HA-pseudotyped lentiviral vector is sufficient for efficient gene transfer to the airways of mice. This is a promising result that could lead to the development of effective gene transfer reagents for the treatment of cystic fibrosis and other human lung diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300025 | PMC |
http://dx.doi.org/10.1002/jgm.2695 | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFBMC Pediatr
December 2024
Research Product Department, R&D Center, Glac Biotech Co., Ltd, Tainan City, Taiwan.
Background: Breast milk is a natural treasure for infants, and its microbiota contains a rich array of bacterial species. When breastfeeding is not possible, infant formula with probiotics can be used as a sole source or as a breast milk supplement. The main aim of this study was to evaluate the growth outcomes and tolerance of infants consuming an infant formula containing Bifidobacterium animalis ssp.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
J Assist Reprod Genet
December 2024
Department of Reproduction, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, 266071, China.
Purpose: In China, the prevalence of hepatitis B virus (HBV) infection among infertile couples is a significant clinical problem. It is necessary to determine the effect of HBV infection on embryo development.
Methods: The 4301 fresh cycles and 5763 frozen embryo transfer (FET) cycles were grouped according to the couple with or without HBV infection.
Braz J Microbiol
December 2024
Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!