The hypothesis of this study was that 17β-estradiol (estradiol) stimulates turkey skeletal muscle growth by influencing myogenic satellite cell proliferation, differentiation, and the gene expression of selected proteins important in regulating growth and development. Increasing levels of estradiol were administered in basal medium containing additional nutrients. Female-derived pectoralis major (PM) satellite cell proliferation was stimulated by estradiol at a level of 10(-9)M following 4days of treatment. Male PM and biceps femoris (BF) satellite cell proliferation was increased at 10(-12)M estradiol. Turkey embryonic myoblast proliferation, however, decreased with 10(-9)M and 10(-5)M estradiol following 3days under these conditions. Estradiol had no effect on the differentiation of any of the 4 groups of cells. Likewise, glypican-1 expression was unaffected by estradiol treatment. MyoD expression decreased in male PM but not BF cells. MyoD expression in female PM cells and embryonic myoblasts were also unaffected by estradiol administration. Estradiol decreased myogenin expression in male satellite cells, but had no effect on female cells. There was a slight decrease in myogenin expression in embryonic myoblasts. The results demonstrate a direct effect of estradiol on avian satellite cell proliferation independent of glypican-1, and decreased expression of MyoD and myogenin in some myogenic cells, coinciding with increased cellular proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2013.01.001DOI Listing

Publication Analysis

Top Keywords

satellite cell
20
cell proliferation
20
estradiol
10
myogenic satellite
8
proliferation differentiation
8
expression
8
myod myogenin
8
unaffected estradiol
8
myod expression
8
female cells
8

Similar Publications

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.

View Article and Find Full Text PDF

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.

View Article and Find Full Text PDF

From molecular to physical function: The aging trajectory.

Curr Res Physiol

December 2024

Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.

Aging is accompanied by a decline in muscle mass, strength, and physical function, a condition known as sarcopenia. Muscle disuse attributed to decreased physical activity, hospitalization, or illness (e.g.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Protocol for the three-dimensional analysis of rodent skeletal muscle.

STAR Protoc

January 2025

Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:

Confocal imaging is a powerful tool capable of analyzing cellular spatial data within a given tissue. Here, we present a protocol for preparing optically cleared extensor digitorum longus (EDL) skeletal muscle samples suitable for confocal imaging/computational analysis. We describe steps for sample preparation (including perfusion fixation and tissue clearing of muscle samples), image acquisition, and computational analysis, with sample segmentation/3D rendering outlined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!