The tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway. The highly conserved p53 Arg(R)-172 is substituted by lysine (K) in Spalax, identical with a tumor-associated mutation. Functionality assays revealed that Spalax p53 is unable to activate apoptotic target genes but is still capable of activating cell cycle arrest genes. Furthermore, we have shown that the transcription patterns of representative p53-induced genes (Apaf1 and Mdm2) in Spalax are influenced by hypoxia. Cell cycle arrest allows the cells to repair DNA damage via different DNA repair genes. We tested the transcription pattern of three p53-related DNA repair genes (p53R2, Mlh1, and Msh2) under normoxia and short-acute hypoxia in Spalax, C57BL/6 wild-type mice, and two strains of mutant C57BL/6 mice, each carrying a different mutation at the R172 position. Our results show that while wild-type/mutant mice exhibit strong hypoxia-induced reductions of repair gene transcript levels, no such inhibition is found in Spalax under hypoxia. Moreover, unlike mouse p53R2, Spalax p53R2 transcript levels are strongly elevated under hypoxia. These results suggest that critical repair functions, which are known to be inhibited under hypoxia in mice, remain active in Spalax, as part of its unique hypoxia tolerance mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2013.01.007DOI Listing

Publication Analysis

Top Keywords

dna repair
12
repair genes
12
spalax
9
transcription pattern
8
mole rat
8
rat spalax
8
cell cycle
8
cycle arrest
8
transcript levels
8
repair
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!