The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the 'indirect loop' in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853485 | PMC |
http://dx.doi.org/10.1113/jphysiol.2012.246660 | DOI Listing |
Neurol Ther
January 2025
Department of Medicine, North Tyneside General Hospital, Rake Lane, North Shields, NE29 8NH, UK.
This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China.
Objectives: To investigate the clinical characteristics and prognosis of infants and young children with basal ganglia infarction after minor head trauma (BGIMHT).
Methods: A retrospective analysis was conducted on the clinical data and follow-up results of children aged 28 days to 3 years with BGIMHT who were hospitalized at Children's Hospital of Soochow University from January 2011 to January 2022.
Results: A total of 45 cases of BGIMHT were included, with the most common symptom being limb movement disorders (96%, 43/45), followed by facioplegia (56%, 25/45).
J Neurointerv Surg
January 2025
Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
Background: Post-stroke epilepsy (PSE) is a major complication of stroke. However, data about the predictors of PSE in patients with acute ischemic stroke (AIS) undergoing mechanical thrombectomy are limited.
Objective: To evaluate the relationship between intraoperative angiographic signs and PSE risk in patients with anterior circulation AIS who underwent mechanical thrombectomy.
Sci Adv
January 2025
Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.
View Article and Find Full Text PDFProg Rehabil Med
January 2025
Department of Rehabilitation Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!