Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Context: Acute cervical spinal cord injury (SCI) has been observed in some patients after a minor trauma to the cervical spine. The discrepancy between the severity of the trauma and the clinical symptoms has been attributed to spinal canal stenosis. However, to date, there is no universally established radiological parameter for identifying critical spinal stenosis in these patients. The spinal canal-to-vertebral body ratio (Torg-Pavlov ratio) has been proposed for assessing developmental spinal canal stenosis. The relevance of the Torg-Pavlov ratio for predicting the occurrence and severity of acute cervical SCI after a minor trauma to the cervical spine has not yet been established.
Purpose: To investigate the Torg-Pavlov ratio values of the cervical spine in patients suffering from acute cervical SCI after a minor trauma to the cervical spine and the use of the Torg-Pavlov ratio for identifying patients at risk of cervical SCI and predicting the severity and course of symptoms.
Study Design/setting: Retrospective radiological study of consecutive patients.
Patient Sample: Forty-five patients suffering from acute cervical SCI and 68 patients showing no neurologic symptoms after a minor trauma to the cervical spine.
Outcome Measures: Midvertebral sagittal cervical spinal canal diameter and the sagittal vertebral body diameter. Calculation of the Torg-Pavlov ratio values.
Methods: Conventional lateral radiographs of the cervical spine (C3-C7) were analyzed to determine the Torg-Pavlov ratio values. Receiver operating characteristic curves were calculated for evaluating the classification accuracy of the Torg-Pavlov ratio for predicting SCI.
Results: The Torg-Pavlov ratio values in the SCI group were significantly (p<.04) smaller compared with that in the control group. A Torg-Pavlov ratio cutoff value of 0.7 yielded the greatest positive likelihood ratio for predicting the occurrence of SCI. However, there were no significant differences in the Torg-Pavlov ratio values between the different American Spinal Injury Association Impairment Score groups and between patients with complete, partial, and no recovery of symptoms.
Conclusions: Developmental cervical spinal canal stenosis assessed by the Torg-Pavlov ratio was characteristic for patients suffering from acute cervical SCI after a minor trauma to the cervical spine. Patients at risk of SCI after a minor trauma to the cervical spine can be identified by applying a Torg-Pavlov ratio cutoff value of 0.7. Other factors in addition to the spinal canal-to-vertebral body ratio affect the severity and course of symptoms as a result of cervical SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2012.10.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!