Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In situ examination of the reductive desorption process for Au microelectrodes modified with a thiol self-assembled monolayer (SAM) using fluorescence microscopy enabled the study of the fate of the desorbed thiolate species. The Bodipy labeled alkyl-thiol SAM, when adsorbed, is not fluorescent due to quenching by the Au surface. Once reductively desorbed, the thiolate molecules fluoresce and their direction and speed are monitored. At moderately negative reduction potentials, the thiolate species hemispherically diffuse away from the microelectrode. Also observed is the influence of a closely positioned counter electrode on the direction of the desorbed thiolate movement. As the potential becomes more negative, the molecules move in an upward direction, with a speed that depends on the amount of dissolved H(2) produced by water reduction. Shown is that this motion is controlled, in large part, by the change in the electrolyte density near the electrode due to dissolved H(2). These results should help in explaining the extent of readsorption at oxidative potentials observed in cyclic voltammetry (CV) reductive desorption measurements, as well as improving the general understanding of the SAM removal process by reductive desorption. The electrogenerated H(2) was also shown to be able to reductively remove the thiol SAM from the Pt/Ir particles that decorate the microelectrode glass sheath.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la305170c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!