Unlabelled: The aim of this study was to determine the properties of gelatin films incorporated with thymol. Gelatin films were prepared from gelatin solutions (10% w/v) containing thymol (1, 2, 4, and 8% w/w), glycerol (25% w/w) as plasticizer, and glutaraldehyde (2% w/w) as cross-linker. Cross-likened films showed higher tensile strength, higher elongation at break, lower Young's modulus, lower water solubility, lower swelling, lower water uptake, and lower water vapor permeability. Incorporation of thymol caused a significant decrease in tensile strength, increase in elongation at break, decrease in Young's modulus, increase in water solubility, decrease in swelling and water uptake, and increase in water vapor permeability slightly. The films incorporated with thymol exhibited excellent antioxidant and antibacterial properties. The antibacterial activity of the films containing thymol was greatest against Staphylucoccus aureus followed by Bacillus subtilis followed by Escherichia coli and then by Pseudomonas aeruginosa. Thus, gelatin films-containing thymol can be used as safe and effective source of natural antioxidant and antimicrobial agents with the purpose of evaluating their potential use as modern nano wound dressing.
Practical Application: This study clearly demonstrates the potential of gelatin films incorporated with thymol as natural antioxidant and antimicrobial nano film. Such antimicrobial films exhibited excellent mechanical, physical, and water activities and could be used as antibacterial nano wound dressing against wounds burn pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.12015 | DOI Listing |
Mater Today Bio
February 2025
China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).
View Article and Find Full Text PDFFood Chem
January 2025
Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye. Electronic address:
This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran.
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties.
View Article and Find Full Text PDFBiomed Mater
January 2025
Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, CHINA.
Osteoblasts play a critical role in maintaining bone homeostasis. Senescence causes by free radical-mediated oxidative stress may affect the viability and osteogenic differentiation potential of osteoblast during bone formation. To eliminate the impacts of senescent cells by free radical scavenging is an optimal option for bone regeneration in age-related bone disease, such as osteoporosis (OP) and periodontitis.
View Article and Find Full Text PDFGels
January 2025
Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Exploiting novel crosslinking chemistry, this study pioneers the use of waterborne polyurethane (WPU) to chemically crosslink porcine-derived gelatin, producing enhanced gelatin hydrogel films through a solvent-casting method. Our innovative approach harnesses the reactive isocyanate groups of WPU, coupling them effectively with gelatin's hydroxyl and primary amino groups to form robust urea and urethane linkages within the hydrogel matrix. This method not only preserves the intrinsic elasticity of polyurethane but also significantly augments the films' tensile strength and strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!