Presently, there are no effective treatments for several diseases involving the CNS, which is protected by the blood-brain, blood-CSF, and blood-arachnoid barriers. Traversing any of these barriers is difficult, especially for macromolecular drugs and particulates. However, there is significant experimental evidence that large molecules can be delivered to the CNS through the cerebrospinal fluid (CSF). The flux of the interstitial fluid in the CNS parenchyma, as well as the macro flux of CSF in the leptomeningeal space, are believed to be generally opposite to the desirable direction of CNS-targeted drug delivery. On the other hand, the available data suggest that the layer of pia mater lining the CNS surface is not continuous, and the continuity of the leptomeningeal space (LMS) with the perivascular spaces penetrating into the parenchyma provides an unexplored avenue for drug transport deep into the brain via CSF. The published data generally do not support the view that macromolecule transport from the LMS to CNS is hindered by the interstitial and CSF fluxes. The data strongly suggest that leptomeningeal transport depends on the location and volume of the administered bolus and consists of four processes: (i) pulsation-assisted convectional transport of the solutes with CSF, (ii) active "pumping" of CSF into the periarterial spaces, (iii) solute transport from the latter to and within the parenchyma, and (iv) neuronal uptake and axonal transport. The final outcome will depend on the drug molecule behavior in each of these processes, which have not been studied systematically. The data available to date suggest that many macromolecules and nanoparticles can be delivered to CNS in biologically significant amounts (>1% of the administered dose); mechanistic investigation of macromolecule and particle behavior in CSF may result in a significantly more efficient leptomeningeal drug delivery than previously thought.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646927 | PMC |
http://dx.doi.org/10.1021/mp300474m | DOI Listing |
Expert Opin Drug Discov
January 2025
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.
View Article and Find Full Text PDFJ Chem Phys
January 2025
CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China.
Advancements in cryo-electron tomography (cryoET) allow the structure of macromolecules to be determined in situ, which is crucial for studying membrane protein structures and their interactions in the cellular environment. However, membranes are often highly curved and have a strong contrast in cryoET tomograms, which masks the signals from membrane proteins. These factors pose difficulties in observing and revealing the structures of membrane proteins in situ.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States.
Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes.
View Article and Find Full Text PDFMolecules
December 2024
Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasourg, Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, 1 Rue Eugène Boeckel, F-67000 Strasbourg, France.
Specific ion effects on the structure and function of many biological macromolecules, their associations, colloidal systems, interfacial phenomena, and even "simple" electrolytes solutions are ubiquitous. The molecular origin of such phenomena is discussed either as a salt-induced change of the water structure (the hydrogen bond network) or some specific (solvent mediated) interactions of one or both of the ions of the electrolyte with the investigated co-solute (macromolecules or colloidal particles). The case of hydrogels is of high interest but is only marginally explored with respect to other physico-chemical systems because they are formed through the interactions of gelling agents in the presence of water and the added electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!