Gaze control and vestibular-cervical-ocular responses after prolonged exposure to microgravity.

Aviat Space Environ Med

Institute of Biomedical Problems, Organization of the Russian Academy of Sciences (RF SSC - IBMP RAS), 76A Khoroshevskoe shosse, Moscow 123007, Russia.

Published: December 2012

Background: Microgravity does not affect visual function directly. However, because of the altered afferentation from vestibular, support, and tactile-proprioceptive systems, it could lead to disturbances in visual tracking and inhibit the cosmonaut's activity. Therefore, it is necessary to obtain quantitative evaluations of spaceflight effects upon gaze control and vestibular-cervical-ocular responses.

Methods: Examination of visual tracking with the head in a fixed position was performed in 26 Russian ISS cosmonauts before and after a prolonged spaceflight (129-215 d). As vestibular tests, we used several roll-tilts and yaw head rotations. Eye movements were recorded using both video-oculographic and electro-oculographic methods.

Results: It was shown that until 9 d after landing (R+9) spontaneous eye movements were increased (spontaneous nystagmus, gaze nystagmus, square wave jerks); otolith function was suppressed (inversion, absence, or significant decrease of the compensatory torsional ocular counter-rolling); vestibular reactivity was elevated (an increased intensity of the vestibular nystagmus during head yaw rotations); amplitude and velocity characteristics of gaze control (saccades, smooth pursuit, gaze holding) were significantly decreased; total reaction time was significantly increased up to 2-3 times; and gaze holding ability was degraded. For several cosmonauts, smooth pursuit was collapsed and their gaze approached the stimulus or pursued its motion utilizing a sequence of saccades at least until R+5.

Discussion: Prolonged exposure to microgravity considerably affects all forms of visual tracking. Revealed disturbances in precision of visual tracking and adoption of the new tracking strategy substantially prolong (up to 2-3 times) the period required to acquire, recognize, and to fixate gaze on the target.

Download full-text PDF

Source
http://dx.doi.org/10.3357/asem.3106.2012DOI Listing

Publication Analysis

Top Keywords

visual tracking
16
gaze control
12
gaze
8
control vestibular-cervical-ocular
8
prolonged exposure
8
exposure microgravity
8
eye movements
8
smooth pursuit
8
gaze holding
8
2-3 times
8

Similar Publications

As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.

View Article and Find Full Text PDF

Background: Immersive virtual reality (iVR) has emerged as a training method to prepare medical first responders (MFRs) for mass casualty incidents (MCIs) and disasters in a resource-efficient, flexible, and safe manner. However, systematic evaluations and validations of potential performance indicators for virtual MCI training are still lacking.

Objective: This study aimed to investigate whether different performance indicators based on visual attention, triage performance, and information transmission can be effectively extended to MCI training in iVR by testing if they can discriminate between different levels of expertise.

View Article and Find Full Text PDF

Brief monocular deprivation during a developmental critical period, but not thereafter, alters the receptive field properties (tuning) of neurons in visual cortex, but the characteristics of neural circuitry that permit this experience-dependent plasticity are largely unknown. We performed repeated calcium imaging at neuronal resolution to track the tuning properties of populations of excitatory layer 2/3 neurons in mouse visual cortex during or after the critical period, as well as in mutant mice that sustain critical-period plasticity as adults. The instability of tuning for populations of neurons was greater in juvenile mice and adult mutant mice.

View Article and Find Full Text PDF

The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.

View Article and Find Full Text PDF

Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!