The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases (CA) IX and CAXII constitute a robust intracellular pH (pH(i))-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX) and LS174Tr cells (inducible knock-down for ca9/ca12) were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pH(o) manipulations and hypoxia (1% O(2)) exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pH(i)-regulating capacity of fibroblasts through inhibition of Na(+)/H(+) exchanger 1 sensitize cells to radiation-induced cell death. Secondly, the pH(i)-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50 and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pH(i) regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pH(i)-regulating CAs as an anti-cancer strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539669 | PMC |
http://dx.doi.org/10.3389/fonc.2012.00199 | DOI Listing |
Eur J Breast Health
January 2025
Department of General Surgery, Elazığ Fethi Sekin City Hospital, University of Health Sciences Turkey, Elazığ, Turkey.
Objective: Triple negative breast carcinoma (TNBC) is characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 receptor expression. Carbonic anhydrase IX (CA IX) is a tumor-associated cell surface glycoprotein that is involved in adaptation to hypoxia-induced acidosis and plays a role in cancer progression. The aim of this study was to investigate CA IX expression in TNBC and its relationship with treatment effect.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC of ~90 nM.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan. Electronic address:
Carbonic anhydrase IX (CA IX), upregulated by hypoxia-inducible factor (HIF), plays a crucial role in regulation of intracellular and extracellular pH, which is essential for the growth and spread of tumors. The overexpression of CA IX in breast cancer is linked to a low post-radiation patient survival rate. Under normoxic conditions, CA IX expression is relatively low, but hypoxia-inducible factors (HIFs) upregulate its expression when oxygen levels drop.
View Article and Find Full Text PDFNeoplasma
April 2024
Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Lung cancer represents the leading cause of cancer-related deaths. Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is a molecularly heterogeneous disease with intratumoral heterogeneity and a significant mutational burden associated with clinical outcome. Tumor microenvironment (TME) plays a fundamental role in the initiation and progression of primary de novo lung cancer and significantly influences the response of tumor cells to therapy.
View Article and Find Full Text PDFPharmaceutics
March 2024
BioCenter, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!