The VMP1-Beclin 1 interaction regulates autophagy induction.

Sci Rep

Institute for Biochemistry and Molecular Medicine, CONICET, Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.

Published: June 2013

The Vacuole Membrane Protein 1 -VMP1- is a pancreatitis-associated transmembrane protein whose expression triggers autophagy in several human diseases. In the current study, we unveil the mechanism through which this protein induces autophagosome formation in mammalian cells. We show that VMP1 autophagy-related function requires its 20-aminoacid C-terminus hydrophilic domain (VMP1-AtgD). This is achieved through its direct binding to the BH3 motif of Beclin 1 leading to the formation of a complex with the Class III phosphatidylinositol-3 kinase (PI3K) hVps34, a key positive regulator of autophagy, at the site where autophagosomes are generated. This interaction also concomitantly promotes the dissociation of Bcl-2, an autophagy inhibitor, from Beclin 1. Moreover, we show that the VMP1-Beclin 1-hVps34 complex favors the association of Atg16L1 and LC3 with the autophagosomal membranes. Collectively, these findings reveal that VMP1 expression recruits and activates the Class III PI3K complex at the site of autophagosome formation during mammalian autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542764PMC
http://dx.doi.org/10.1038/srep01055DOI Listing

Publication Analysis

Top Keywords

autophagosome formation
8
formation mammalian
8
class iii
8
autophagy
5
vmp1-beclin interaction
4
interaction regulates
4
regulates autophagy
4
autophagy induction
4
induction vacuole
4
vacuole membrane
4

Similar Publications

Background: The microtubule-associated protein tau is the most commonly misfolded protein in neurodegenerative disorders including Alzheimer's disease and other related tauopathies. These neurological illnesses are hypothesized to share a common mechanism of disease progression, where pathogenic aggregates or 'seeds' of the tau protein function as templates promoting misfolding of functional, soluble tau protein. Under this premise, therapeutic strategies that modulate the seeding cascade, have high potential to interfere with the disease process.

View Article and Find Full Text PDF

Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies.

J Cell Physiol

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.

The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy.

View Article and Find Full Text PDF

DNA methylation modifications are an important mechanism affecting the process of atherosclerosis (AS). Previous studies have shown that Galectin-8 (GAL8) DNA methylation level is associated with sudden death of coronary heart disease or acute events of coronary heart disease. However, the mechanism of GAL8 DNA methylation and gene expression in AS has not been elucidated, prompting us to carry out further research on it.

View Article and Find Full Text PDF

Dynamic interplay of autophagy and membrane repair during Mycobacterium tuberculosis Infection.

PLoS Pathog

January 2025

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America.

Autophagy plays a crucial role in the host response to Mycobacterium tuberculosis (Mtb) infection, yet the dynamics and regulation of autophagy induction on Mtb-containing vacuoles (MCVs) remain only partially understood. We employed time-lapse confocal microscopy to investigate the recruitment of LC3B (LC3), a key autophagy marker, to MCVs at the single cell level with our newly developed workflow for single cell and single MCV tracking and fluorescence quantification. We show that approximately 70% of MCVs exhibited LC3 recruitment but that was lost in about 40% of those MCVs.

View Article and Find Full Text PDF

ATG9A facilitates the closure of mammalian autophagosomes.

J Cell Biol

February 2025

Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!