Lipopolysaccharide (LPS) is the major outer leaflet constituent of the Gram-negative outer membrane (OM) bilayer. A bipartite protein complex of LptD and LptE assembles LPS into the OM. It has been established that LptE assists folding and assembly of its β-barrel partner LptD, yet reported biochemical evidence suggested additional LptE functions. Here, we isolated dominant negative lptE mutations, seeking to inform these functions. The lptE14 mutation increased OM permeability to erythromycin, even when the wild-type lptE gene was present. We show that the lptE14 mutation does not cause a defect in either LptD assembly or LPS export. A spontaneous IS1 insertion in secA suppressed lptE14 erythromycin sensitivity by removing the C-terminal SecB-binding domain of SecA. While this suppressor mutation broadly impeded SecB-dependent secretion of preproteins, we show that suppression was a direct and specific consequence of reduced LptD levels in the OM. We suggest that lptE14 causes poor plugging of the LptD β barrel and that a reduction of ineffectively plugged LptD-LptE14 complexes in the OM decreases permeability to erythromycin. Hence, lptE14 supports a proposed plug-and-barrel LptE-LptD arrangement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591993 | PMC |
http://dx.doi.org/10.1128/JB.02142-12 | DOI Listing |
Sci Rep
January 2025
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).
View Article and Find Full Text PDFFood Res Int
January 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China. Electronic address:
The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Karst Science, Guizhou Normal University, Guiyang 550001, PR China.
Extreme precipitation is a crucial trigger for soil erosion events in karst regions. However, the existence of a scale effect in suspended sediment characteristics of karst basins and which extreme precipitation variables control this effect remain unclear. To investigate this, we analyzed the scale effect on suspended sediment characteristics using monthly hydrological data from five karst basins of varying scales, consistently monitored from 2012 to 2019.
View Article and Find Full Text PDFEur J Neurol
January 2025
Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.
Methods: Demographic and clinical findings were recorded.
Glob Chang Biol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.
Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!