We investigated and described the kinetics of heat shock protein (Hsp) 110 expression and distribution in rat primary myocardial cells exposed to heat stress in vitro. After incubation at 37°C for 72 h, myocardial cells were heat stressed at 42°C for 0, 10, 20, 40, 60, 120, 240, 360, and 480 min. Significant increases in aspartate transaminase, lactate dehydrogenase, and creatine kinase enzymatic activities in the myocardial cell culture media were observed during heat stress, suggesting that the integrity of the myocardial cells was altered. Immunocytochemical analysis revealed that the expressed Hsp110 was constitutively localized in the cytoplasm and in the nuclei in small amounts characterized by a granular pattern. Nuclear Hsp110 levels increased significantly after 240 min of heat stress compared with levels in the control. The overall levels of Hsp110 expression increased significantly after 20 min. After 240 min, Hsp110 levels were approximately 1.2-fold higher than those in the control. Increasing levels of hsp110 messenger RNA detected using real-time quantitative polymerase chain reaction were observed after 20 min of heat stress, and the levels peaked with a 10-fold increase after 240 min of heat stress. These results indicate that the expression of Hsp110 in primary myocardial cells in vitro is sensitive to hyperthermic stress and that Hsp110 is involved in the potential acquisition of thermotolerance after heat stress. Therefore, Hsp110 might play a fundamental role in opposing and alleviating heat-induced damage caused by hyperthermic stress in primary myocardial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4238/2012.November.29.1 | DOI Listing |
Photosynthetica
January 2025
University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France.
High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens.
View Article and Find Full Text PDFVet Anim Sci
March 2025
Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy.
Sheep in Italy are exposed to heat stress (HS) for several months, increasing the risk of HS-related problems such as the decrease in growth, reproductive performance, milk quantity and quality and natural immunity. This study aimed to assess changes in hematological and biochemical parameters in dairy sheep from three different farms with varying pasture management: A (no water or shade), B (water but no shade), and C (both water and shade). From March to June, when HS risk is high, monthly blood samples (T1-T4) were collected from 20 sheep per farm (total n = 60).
View Article and Find Full Text PDFBurns Trauma
January 2025
Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510063, Guangdong, China.
In the past two decades, record-breaking heat waves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a life-threatening systemic condition characterized by a core body temperature >40°C and the subsequent development of multiple organ dysfunction syndrome. Lung injury is a well-documented complication of heatstroke and is usually the secondary cause of patient death.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!