Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mas.21365 | DOI Listing |
Food Chem X
January 2025
Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands.
The ambition to utilize agricultural by-products has spotlighted tomato leaves as a promising source for plant-based proteins. High-yielding protein extractability is key for its industrial use, but previous studies reported decreased protein extractability at later stages of plant development. This study investigated the underlying factors in protein extractability through a comprehensive proteomics analysis across four plant developmental stages (vegetative, flowering, fruit-forming, mature-fruit).
View Article and Find Full Text PDFDietary protein has been shown to impact long-term health outcomes differentially depending on its amount and source. It has been suggested that interactions of the gut microbiota with dietary proteins mediate some of the effects of dietary protein on health outcomes. However, it remains unclear what specific host responses drive the health effects of dietary proteins from different plant and animal sources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea.
Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.
View Article and Find Full Text PDFJ Food Sci
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China.
The purpose of this article is to investigate the effects of walnut (Juglans regia L.) kernel pellicle on the composition and properties of enzymatic hydrolysis products of walnut meal using peptidomics and bioinformatics. In this study, a total of 3423 peptide sequences were identified in peeled walnut protein hydrolysates (PWPH) and unpeeled walnut protein hydrolysates (UWPH).
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China. Electronic address:
Suaeda salsa, the dominant herbaceous plant in the high salinity areas of Asia, can even grow in the heavy metal polluted region. In order to illustrate the mechanisms of Cd (cadmium) tolerance in S. salsa, the accumulation, physiological and proteomic characters under two different concentrations of Cd exposure were investigated in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!