Production and initial structural characterization of the TM4TM5 helix-loop-helix domain of the translocator protein.

J Pept Sci

Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biology and Technology (iBiTecS), Gif-sur-Yvette, France.

Published: February 2013

AI Article Synopsis

  • TSPO (translocator protein) is an important membrane protein found in mitochondria that helps move cholesterol, critical for steroid production.
  • The study focuses on understanding the structure of TSPO by examining double transmembrane domains (TM4TM5) through various techniques, including production in E. coli and purification.
  • Characterization of TM4TM5 showed it maintains a highly helical structure in different detergent micelles, indicating it has a stable configuration, which is important for its function.

Article Abstract

Mainly present in the mitochondria, the translocator protein, TSPO, previously known as the peripheral benzodiazepine receptor, is a small essential membrane protein, involved in the translocation of cholesterol across mitochondrial membranes, a rate determining step in steroids biosynthesis. We previously reported the structure of five fragments encompassing the five putative transmembrane helices and showed that each of these fragments constitutes an autonomous folding unit. To further characterize the structural determinants responsible for helix-helix association of this membrane protein, we now investigate the folding of double transmembrane domains in various detergent micelles. Herein, we present the successful biosynthesis of a double transmembrane domain encompassing the last two C-terminal helices (TM4TM5). For optimal production of this domain in Escherichia coli, the evaluation of various peptide constructs, including TM4TM5 fused to different purification tags or to solubilizing proteins, was necessary. The protocol of production of TM4TM5 with more than 95% purity is reported. This domain was further characterized using circular dichroism and solution state NMR. Far-UV circular dichroism studies indicate that the secondary structure of TM4TM5 is highly helical when solubilized in various detergent micelles including n-dodecyl-β-d-maltoside, n-octyl-β-d-glucoside, n-dodecylphosphocholine, 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), and 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol). In addition, the solubilization conditions of the domain were optimized for NMR experiments, and preliminary analysis indicates that TM4TM5 adopts a stable tertiary fold within the TM4TM5-DHPC complex.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.2468DOI Listing

Publication Analysis

Top Keywords

translocator protein
8
membrane protein
8
double transmembrane
8
detergent micelles
8
circular dichroism
8
tm4tm5
6
domain
5
production initial
4
initial structural
4
structural characterization
4

Similar Publications

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

Protein post-translational modifications (PTMs) play crucial roles in various cellular processes. Despite their significance, only a few PTMs have been extensively studied at the proteome level, primarily due to the scarcity of reliable, convenient, and low-cost sensing methods. Here, we present a straightforward and effective strategy for detecting PTMs on short peptides through host-guest interaction-assisted nanopore sensing.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!