Mainly present in the mitochondria, the translocator protein, TSPO, previously known as the peripheral benzodiazepine receptor, is a small essential membrane protein, involved in the translocation of cholesterol across mitochondrial membranes, a rate determining step in steroids biosynthesis. We previously reported the structure of five fragments encompassing the five putative transmembrane helices and showed that each of these fragments constitutes an autonomous folding unit. To further characterize the structural determinants responsible for helix-helix association of this membrane protein, we now investigate the folding of double transmembrane domains in various detergent micelles. Herein, we present the successful biosynthesis of a double transmembrane domain encompassing the last two C-terminal helices (TM4TM5). For optimal production of this domain in Escherichia coli, the evaluation of various peptide constructs, including TM4TM5 fused to different purification tags or to solubilizing proteins, was necessary. The protocol of production of TM4TM5 with more than 95% purity is reported. This domain was further characterized using circular dichroism and solution state NMR. Far-UV circular dichroism studies indicate that the secondary structure of TM4TM5 is highly helical when solubilized in various detergent micelles including n-dodecyl-β-d-maltoside, n-octyl-β-d-glucoside, n-dodecylphosphocholine, 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), and 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol). In addition, the solubilization conditions of the domain were optimized for NMR experiments, and preliminary analysis indicates that TM4TM5 adopts a stable tertiary fold within the TM4TM5-DHPC complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.2468 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.
View Article and Find Full Text PDFBiochemistry
January 2025
BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.
Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xihua University, College of Food and Bioengineering, CHINA.
Protein post-translational modifications (PTMs) play crucial roles in various cellular processes. Despite their significance, only a few PTMs have been extensively studied at the proteome level, primarily due to the scarcity of reliable, convenient, and low-cost sensing methods. Here, we present a straightforward and effective strategy for detecting PTMs on short peptides through host-guest interaction-assisted nanopore sensing.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.
Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!