During the past two decades, the exploration of function of two incretin hormones, namely glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), has led to the development of two categories of novel therapeutic agents for diabetes and its complications, known as GLP-1 receptor (GLP-1R) agonists and DPP-IV inhibitors. Mechanisms underlying the function of GLP-1, however, still need to be further explored. GLP-1 not only functions as an incretin hormone in stimulating insulin secretion in response to nutritional, hormonal and neuronal stimulations, but also acts as an "insulin-like" factor in β-cell and extra-pancreatic organs. In addition to these insulinotropic and insulinomimetic effects, GLP-1 was shown to exert its protective effect in β-cell by repressing the expression of TxNIP, a mediator of glucolipotoxicity. A number of recent studies have shown that the Wnt signaling pathway effector, the bipartite transcription factor β-catenin/TCF, controls not only the production of GLP-1, but also the function of GLP-1. Furthermore, previously assumed "degradation" products of GLP-1(7-36)amide, including GLP-1(9-36)amide and GLP-1(28-36)amide, have been shown to exert beneficial effect in pancreas and extra-pancreatic tissues or cell lineages. Here we summarized our current knowledge on the metabolic, proliferative and protective effects of GLP-1(7-36)amide and its cleavage fragments, mainly focusing on pancreatic β-cells and the involvement of the Wnt signaling pathway effector β-catenin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605164 | PMC |
http://dx.doi.org/10.4161/isl.23345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!