We previously have shown that Ahsg, a liver glycoprotein, inhibits insulin receptor (InsR) tyrosine kinase (TK) activity and the ERK1/2 mitogenic signaling arm of insulin signaling. Here we show that Ahsg blocks insulin-stimulated GLUT4 translocation and Akt activation in intact cells (mouse myoblasts). Furthermore, Ahsg inhibits InsR autophosphorylation of highly-purified insulin holoreceptors in a cell-free, ATP-dependent system, with an IC50 within the range of single-chain Ahsg concentrations in human serum. Binding of (125)I-insulin to living cells overexpressing the InsR shows a dissociation constant (KD) of 250pM, unaltered in the presence of 300 nM Ahsg. A mutant InsR cDNA encoding the signal peptide, the β-subunit and the furin processing site, but deleting the α-subunit, was stably expressed in HEK293 cells. Treatment with peroxovanadate, but not insulin, dramatically increased the 95 kD β-subunit tyrosine phosphoryation. The level of tyrosine phosphorylation of the 95-kD β-subunit can be driven down sharply by treatment of living HEK293 transfectant cells with physiological doses of Ahsg. Treatment of myogenic cells with Ahsg blunts insulin-stimulated InsR autophosphorylation and AKT phosphorylation. Taken together, we show that Ahsg antagonizes the metabolic functions initiated by InsR activation without interference in insulin binding. The experiments suggest a direct interaction of Ahsg with the InsR ectodomain β-subunit in a mode that does not significantly alter the high-affinity binding of insulin to the holoreceptor's two complementing α-subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2012.12.011DOI Listing

Publication Analysis

Top Keywords

ahsg
9
insulin
8
arm insulin
8
95-kd β-subunit
8
insulin receptor
8
insr autophosphorylation
8
insr
7
β-subunit
5
cells
5
ahsg-fetuin blocks
4

Similar Publications

Identification of Key Genes and Pathways in Lenvatinib-resistant Hepatocellular Carcinoma using Bioinformatic Analysis and Experimental Validation.

Curr Med Chem

January 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.

Background: Resistance to lenvatinib poses a serious threat to the therapy of patients with Hepatocellular Carcinoma (HCC). The mechanism by which HCC develops resistance to lenvatinib is currently unknown.

Objective: The aim of this study was to identify key genes and pathways involved in lenvatinib resistance in HCC using bioinformatic analysis and experimental validation.

View Article and Find Full Text PDF

Dynamic proteomic and phosphoproteomic analysis reveals key pathways and targets in the early stages of high-altitude traumatic brain injury.

Exp Neurol

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China. Electronic address:

Traumatic brain injury (TBI), particularly at high altitudes (HA-TBI), is a leading cause of mortality and disability, yet clear diagnostic and treatment protocols are lacking. This study explores the early pathophysiological changes occurring within 24 h following HA-TBI, with a focus on differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Using a low-pressure hypoxic chamber to simulate high-altitude conditions combined with a controllable cortical impact (CCI) model, we established a rat model of HA-TBI.

View Article and Find Full Text PDF

Background: Identifying markers or genes crucial for growth traits in Zhongwei goats is pivotal for breeding. Pinpointing genetic factors linked to body size gain enhances breeding efficiency and economic value. In this study, we used the MGISEQ-T7 platform to re-sequence 240 Zhongwei goats (133 male; 107 female) belonging to 5 metrics of growth traits at different growth stages (40 days and 6 months, here in after referred to as 40d and 6 m), namely, Body Weight (BW), Body Height (BH), Body Length (BL), Chest Circumference (CC), Tube Circumference (TC) were examined.

View Article and Find Full Text PDF

Treatment of severely injured patients represents a major challenge, in part due to the unpredictable risk of major adverse events, including death. Preemptive personalized treatment aimed at preventing these events is a crucial objective of patient management; however, the currently available scoring systems provide only moderate guidance. Biomarkers from proteomics/peptidomics studies hold promise for improving the current situation, ultimately enabling precision medicine based on individual molecular profiles.

View Article and Find Full Text PDF

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!